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1 GENERAL INTRODUCTION 

As the world's economies move towzird greater integration, foreign exchange rate determination 

has become an increasingly important area in international finance. Researchers have frequently used 

empirical research to monitor and predict exchange rate movements cind many have sought to employ 

new statistical methods in their efforts to understand the complex movements of exchange rates. This 

dissertation applies two statistical models to foreign exchange rate data in two main parts. The first 

part, am application of the partial system model of cointegration developed by Johansen (1990), uses 

the concept of weak exogeneity to simplify the complex amadysis. While a direct application of the 

cointegration approaich with many variables is not easy to handle, the partial system model can reduce 

the number of the parameters to be estimated by identifying weakly exogenous variables. This method is 

illustrated utilizing a theoreticaJ long-run model based on Dombusch's sticky price model. In this part, 

the small country assumption is relaxed, so that both countries may be taken to be large. Furthermore, 

the model is also extended to include a third country. 

The data set here consists of monthly exchange rates, countries' money supplies eind GNPs for 

three countries; Germany, Japan and the United States. First, the full system cointegration model is 

estimated and the weakly exogenous variables are identified from the results of the full system model. 

Using the information from the weaJdy exogenous variables permits the nimiber of the parameters to 

be reduced, thereby forming the pairtial system model. Estimation of the partiad system model will 

provide information of long-run relations among the vairiables. Then, the next step is to interpret 

long-nm relations among the parameters, am interpretation based on the modified Dombusch's model. 

Because some of the relations may not be interpreted in an econonfiically meamingful way, variance 

decomposition amd impulse response analysis are conducted to investigate the short-run dyneunics of 

the system. 

In the second part, a regime-switching stochastic volatility (RSV) model is applied to daiily exchange 

rate data to capture the possibly changing volatility of exchamge rates over time. While more compli­

cated to implement thain other methods, the RSV model recommends itself as the most natural method 
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to apply when compared to the ARCH and GARCH models. 

Here, a Gibbs sampler technique is used to approximate the posterior distribution of all unknown 

model parameters. By imposing interest rate peirity, the relationship between exchange rates and foreign 

and domestic interest rate differences is zilso simultauieously examined. The results indicate that the 

interest rate difference does not affect the level and the volatility of exchange rates, a finding which 

supports the random wcilk theory of excheinge rates. On the other hand, two different regimes, a high-

volatility regime and a low-volatility regime, are discovered and well modeled. The development of a 

forecasting model will be the subject for future studies. 



www.manaraa.com

3 

PART I 

COINTEGRATION ANALYSIS OF EXCHANGE RATES 
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2 INTRODUCTION 

Exchange rate determination has been one of the important fields in international economics. Since 

the world economy moved to the floating exchange rate system early in 1970's, resezirchers have been 

especially concerned with how exchange rates are determined in the foreign exchange rate market and 

have presented many models exploring the questions of exchange rate determination. Among the most 

important models eure the monetary model by Frenkel, Bilson and Mussa, the sticky price model by 

Dombusch eind the currency portfolio model by King, Putnam and Wilford. Many other variations are 

derived from these three main models. 

Chapter 3 will review some structural models of exchange rate determination and discuss three tra­

ditional models; the monetary approach, the portfolio balance approach, and the currency substitution 

approach as well as some variations derived from these models. Chapter 4 presents a new theoretical 

model based on Dombusch's sticky price model. This new model slightly modifies Dombusch's model 

by adopting the laurge-coimtry assumption, an assumption that permits all prices in the system to be 

endogenized. It also attempts to extend the model to the three-country case so that the third country 

effects can be analyzed. 

Mciny economic variables contain a unit root or unit roots. With non-stationary variables, the 

traditional approach applies the first differenced variables, however, if there is a linear combination 

among the variables which is stationary, the traditional approach is no longer appropriate. In their 

seminal work. Nelson and Plosser (1982) point out that many economic variables contain unit roots 

that require special treatments in this case. Some special treatments are available because of recent 

developments in econometrics. Dickey suid Fuller, and Phillips and Perron are among those who have 

developed unit root tests. In addition, Johansen's seminal paper (1988) developed a methodology to 

deal with the so-called cointegrated vciriables. 

Chapter 5 examiines statistical methodology. First, the vector autoregression (VAR) model discussed 

in Sims' seminal paper (1980) is reviewed, followed by identification issues and hypothesis testing. Then, 

the chapter explores the error correction model to deal with cointegrated relations among the variables. 



www.manaraa.com

5 

Testing for the number of cointegrating relations among the variables will also be a topic in this chapter. 

To determine the numbers of the cointegrating relations, the trace cind likelihood ratio test will be used. 

One of the problems that the VAR-type analysis faces is that adding more variables to the system 

drastically increases the number of the parameters in the system. This will create some difficulties in 

estimating these parameters in terms of degrees of freedom. To reduce such difficulties, the partial 

system model will be applied to the data. While the full system model such as VAR treats all the 

vzuriables in the system as endogenous, the pairtiad system model treats some of the vciriables in the 

system as exogenous so that these variables can be modeled less carefully. To apply the partied system 

model, the concept of weak exogeneity is required. These issues £dso will be exaunined in Chapter 4. 

The rest of the part reports empiriccJ results based on the previously discussed theory and method­

ology. Chapter 6 reports the data set containing economic variables from Germsiny, Japaui aind the 

United States used for the empirical work. It presents the summary of the data as well as the results 

for the unit root tests. 

In Chapter 7, both the error correction model and the partial system model will be estimated. It 

also reports the cointegrating relations zimong the variables. These cointegrating relations, which Eire 

considered to be economic long-run relations among the variables, will be examined and interpreted. 

After examining the two-country cases; the Germemy-U.S. case and the Japan-U.S. case, the three-

country case; i.e., the Germamy-Japzin-U.S. case is investigated. The long-run analysis is concerned 

with long-run equilibrium. Short-run dynamics and long-run effects will be issues of short-run anadysis. 

Chapter 8 reports the results for short-run aneilysis, as well as the variance decomposition and 

impulse response from the models estimated in Chapter 7. These analyses are conducted for the two-

country cases cmd the three-country case. The results for vsirieuice decomposition anadysis are reported 

for both the full system model and the partieJ system model. The results for impulse responses aire 

reported only for the partial system model. 

Chapter 9 presents conclusions and further research. 
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3 MONETARY APPROACH TO THE EXCHANGE RATE 

Since the floating excheinge rate system was adopted, researchers have focused on how the exchange 

rates are determined amd how they behave. Among the many approaches to these problems, the mone­

tary approach, the portfolio balance approach and the currency substitution approach are considered to 

be important. Msiny studies have been done using each approach. A general summaries of these three 

principed approaudies Me found in Dombusch (1980a), Frzuikel (1983), Frenkel and Mussa (1985), Mac-

Donadd (1988), and Baillie and McMadion (1989). More detailed references for the monetsiry approach 

are Dornbusch (1976a), Dombusch (1976b), Frenkel (1976), aind Mussa (1984). For the portfolio balance 

approach, the readers are referred to McKinnon emd Oats (1966), Bramson (1968), Branson (1975), and 

McKinnon (1969). Finally, Kouri (1976), Kouri and de Macedo (1978), Calvo amd Rodriguez (1977), 

amd Frenkel and Rodriguez (1982) are good references for the currency substitution approau±. This 

chapter will review two approaches to exchamge rate determination; the monetairy approaich aind the 

currency portfolio approach. Discxission of the monetary approach will include the flexible price model, 

the sticky price model, and the interest rate differential model. The following chapter. Chapter 4, will 

consider and extend the sticky price model as the theoretical model and focus of the anaJysis in this 

part. 

3.1 The Monetary Approach 

There are three principal version of the Monetairy Approach to exchange rate determination; the 

flexible price monetairy model by Frenkel (1976) and Bilson (1978a,b), the sticky price model of Dom­

busch (1976a,b), aind the real interest rate differentiaJ model due to Frankel (1979). These three models 

aire similair in the sense that aJl the models adopt the so-called asset market view of exchange rate 

determination; Mussa (1984). This view considers the foreign exchange rate as aui asset and prices the 

exchainge rate like other financial assets. Framkel and Bilson's model is the basic model in the monetary 

approach, and Dombusch's and Frankel's models modify Frenkel and Bilson's model by replacing some 

of the assumptions used by Frenkel and Bilson. 
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3.1.1 The Flexible Price Monetary Model 

The following five assumptions are usually made in the monetary flexible appro2u:h: (a) goods prices 

are completely flexible, (b) there exists perfect substitutability between domestic and foreign assets, 

(c) capital is perfectly mobile, (d) the money supply emd real income are exogenous variables cind (e) 

domestic money is held by domestic residents only while foreign money is held by foreign residents only. 

Since the exchange rate is considered as the relative price of one nation's money to another nation's 

money in the flexible price approach, it is determined where the supply of national monies equals the 

demand for these currencies. It emphasizes the importance of the stock aspect rather than flow aspect. 

This appro2ich starts with the assumption of money market equilibrium. The real money demzuid 

function is written as: 

jVf '  -N .  9L .  dL .  
— = L{Y,  i )  where gy > ° 

where 

M'^ is the demand for money, 

P is the domestic price level, 

Y is the domestic income level, 

i  is the domestic short-term interest rate. 

The above equation indicates that real money demand is a function of income and interest rates. 

Money demand is assumed to respond positively to domestic income and negatively to interest rates. 

The equation (3.1) often appears in the literature in logarithmic form: 

— pt = k + <i>yt - Alt (3.2) 

where 

k = constant, 

Pt = log of the domestic price level, 

yt  = log of domestic income level, 

i t  = the domestic short-term interest rate, 

<i> = the money semi-elasticity of the real income, 

A = the money elasticity of the interest rate. 

The same equation is assumed to hold for a foreign country: 

m;'^ - p- = k- + 6y; - Ai- (3.3) 
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where the asterisks denote foreign variables. As in many theoretical and empirical works, the assumption 

is made here that both the money demand elasticity of the reed income, 6, and the money demand semi-

elasticity of the interest rate, A, are the same for the domestic jind foreign country. Equilibria in the 

money markets are described by: 

TTif  =m\ = TTit ,  = ml'  = mj (3.4) 

Therefore, the following relationship is derived from (3.2), (3.3) and (3.4): 

Pt-Pt  = -(^  -  k')  -r  {mt  -  m^) -  6{yt  -y i )  + -^('t ~ »T) (3-5) 

Another basic assumption in this approach is the purchasing power parity assumption, made from 

assumption (a) above: 

Ct = Pt - P't (3-6) 

The purchasing power pairity condition links domestic and foreign money demand, at is defined here as 

the price of foreign currency in units of domestic currency. Substituting (3.6) into (3.5) gives: 

fit = -{k -  k')  + {mt -  m;)  -  <?5(yt - yj) + A(it - i^)  (3.7) 

The equation (3.7) is the simplest equation of exchange rate determination. According to this simplest 

of models, the exchemge rate is determined by a linear combmation of the differences of domestic and 

foreign fundamentzJs; that is, differences in money supplies, in incomes, and in interest rates. By 

considering assumptions (b) and (c), the covered interest parity condition C2in be introduced: 

(3.8) 

where f t  i s  a.  forward exch£inge rate. Then, (3.7) cein be modified as: 

ct = -(i- i") + (mt -TTiJ)  -  <p{yt  -  yi)  +  ̂ f t  -e t )  (3.9) 

This is Bilson's familiar exchange rate determination model. As Gardeazabed and Regulez (1992) point 

out, the equations (3.7) and (3.9) are equivalent imder perfect capital mobility because the covered 

interest rate parity condition becomes the no-arbitrage condition. Furthennore, the assumption that the 

forward exchamge rate is an unbiased eflScient expectation of the future spot exchange rate, ft = EtCt+i, 

will introduce the uncovered interest parity condition: 

i t  -  it  = -  et (3.10) 
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By substituting (3.10) into (3.7): 

fit = -{k -  k')  + (mt ~  mi)  -  <p(r/ t  -  l/c)  + A(Etet+i - fit) (3.11) 

Solving equation (3.11) above for the current exchange rate, et, then: 

ec = Y^[-(t-i") + (fnt - nJt")-0(yt-2/£*) + A(E cet+i)] 

+ . EfCe+i (3.12) 
1 + A 1 + A 

where zt = —(k -k') + (mt — — yj) are economic fundamentcils. Assuming the expectations 

of Ct+i are formed rationally, then (3.12) can be solved recursively: 

i:=l 

t:=X 

The result, (3.12), reveals that the current exchange rate, Cc, depends on the expected fixture levels of 

the foreign and domestic exogenous variables, k, k', mt+i, yt+i and Equation (3.12) also 

clarifies the relationship between the current exchange rate, ct, and the expected future exchange rate, 

EtCt+i. If the money semi-elasticity of the interest rate. A, is large enough, then is close to 1, and 

Ce will be close to EtCt+i, that is, Ct and FtCt+i are closely correlated. Baillie and McMahon (1989) 

modify the model (3.7) by introducing an exchange rate adjustment mechanism. They assume that the 

exchange rate adjusts as follows: 

et-et_i =  ̂ (et-Ct-i) (3.14) 

where 

et=pt-pl (3.15) 

Then, (3.7) becomes: 

fit  = -6{k -  k')  + 9{mt - mj) -  0<i){yt  -  yj) + 9X{i t  -  zj) + (1 - ̂ )et-i (3.16) 

The equations (3.7) and (3.16) tell us that em increase in money supply is expected to lead to a 

depreciation of the exchange rate by the same proportion euid that an increase in domestic real interest 

rates will cause a depreciation unlike that predicted by the standard Keynesian model. The monetaxy 

approach explains these results by stating that cin increase in the domestic interest rate reduces the 

demand for money which creates an excess supply in the market, .\nother direction to extend this 
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simple flexible price model (3.7) is to specify the stochastic processes governing the evolution of the 

exogenous variables. For instance, MacDonald (1988) assumes that the levels and rates of growth of 

the money supply, Mt = rrit — mi, follow random walks: 

where Ct and (it axe white noise disturbances; e£~iV(0, and ;ic~i\r(0, (t^). He shows that the impor­

tant fzu:tor that determines the accuracy of exchange rate expectation is how well market participants 

in foreign exchange market can distinguish shocks to the level of the money supply process, £t,  from 

shocks to the rate of growth of the money supply, fit- He explains this by distinguishing two cases; 

(a) the full information case where participants have all information on the stochastic processes of e, 

T], fi, and M, and (b) particd information case where participeuits czin't differentiate the sources of the 

unanticipated cheuige in the money supply. 

3.1.2 The Sticky Price Monetary Model 

The above approach, what MacDonald calls the flexible-price monetary approach (FPMA), imposes 

some unrealistic assumptions. PPP is one of the crucial building-block assimiptions. However many 

empirical researches have indicated that PPP holds under the hyper-inflationary situation or in the long 

run, but not in the short run. One way to reconcile the model with this fact is to assume that the goods 

market is slow to move back to the equilibrium due to the stickiness of goods prices, once the goods 

market deviates from the equilibrium, while the money market is quick to return to the equilibrium or 

is always in equilibrium. The sluggishness of goods prices still assumes that PPP holds in the long run 

because the goods market is also in equilibrium in the long nm. The difference of adjustment speed in 

the two mairkets, goods market 2uid money mairket, explains the failure for PPP to hold in the short run, 

eind also the volatility of the exchange rate, that is, overshooting of the exchange rate. This sticky-price 

monetary approach was developed by Dombusch (1976a). He changes some of the assimiptions made 

for FPMA. Instead of assxmiing that goods prices are completely flexible (a) in the above, it is assumed 

that goods prices adjust to a new equilibrium with a lag and domestic and foreign goods aire no longer 

perfect substitutes (a'). The different speeds of adjustment in the two markets adiow a short-run cheinge 

in the money supply to have real effects due to the terms of trade. The model is formulated as follows 

(Dombusch (1976a)): 

(3.17) 

m — p = oy — Xi  (3.18) 

j 
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i  = i '  +e where e = d(e — e) (3.19) 

d= u + 6{e — p)+-Yy — a-i  (3.20) 

p = II[cf - y] 

= E[[u + <y(e-p)+ (7 —l)y —cri] (3-21) 

The equation (3.18) is a conventional money demamd equation. The equation (3.19) implies that capitad 

is perfectly mobile. The equation (3.20) is a demand function which describes the dependency on e, 

p, y, and i. tt is a shift parameter in this equation. The equation (3.21) is a representation of excess 

demand where II is the speed of eidjustment of excess demaind. The following long-run relationships 

between the exchainge rate cind the price level exist, since p = 0 in the long run: 

e = p + ^[cri- + (1 - 7)y - u] (3.22) 

e=e--^b-p] (3.23) 

By using (3.22) and (3.23): 

/  S  - j -  c9  .  

= -u\p-p]  (5.24) 

where u = II(U^). Dornbusch solves the above system of differential equations and obtadns the 

following solutions: 

Pf = P + (Po - p)e~'" (3.25) 

fie = e-^(po-p)e- '" 

= e + (fio — e)e~'" (3.26) 

The equation (3.26) states that the exchange rate is above the long-run exchange rate if the starting 

value of p is below the long-run price level. He also derives the monetziry expansion effect on the 

exchamge rate: 
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where m is money supply. Apparently ^ > 1, since both A and 0 eire positive. Since goods prices do 

not chzmge insteintaneously, exchange rates must swing quickly and must swing beyond target levels, 

which implies that the exchange rate overshoots its long-run level. A crucieil point of this overshooting 

phenomenon is that the money market is in equilibrium constantly but goods market may not be in 

equilibrium in the short nm. MacDonzJd (1988) and others point out some shortcomings of this model. 

First, the Dombusch model assumes a one-time rise in the domestic interest rate leauis to an infinite 

capital inflow. However, MaicDonald points out that this is only applicable to the very short-run case. 

Secondly, the Dombusch model allows domestic residents to hold domestic money only, not foreign 

assets. As King, Putnum, and Wilford (1986) point out, this assumption is not realistic. King et al. 

emphasize the importance of currency substitution while the Dombusch model assumes the elasticity 

of substitution is zero. Thirdly, the country with expansionary monetary policy faces a current account 

surplus, which implies domestic residents are accumulating foreign assets. Hence, this state can not 

be an equilibrium. The portfolio bcilance model may be more appropriate to take this situation into 

account. 

3.1.3 The Real Interest Differential Model 

Framkel (1979) emphasizes a role for differences in secular rates of inflation in his model. He replaces 

the rational expectation of the future exchange rate with am observed proxy, the expected inflation 

differential. The real interest differentiad model of Frankel still assumes that goods prices are sticky and 

that PPP does not hold in the short run, as in the Dombusch model. Frankel replaces (3.14) with the 

following equation: 

et = -0(et -et)+ H? -  II," (3.28) 

where IIJ® is the current rate of expected long-run inflation. Given uncovered interest parity, the 

long-run interest differential equals the expected long-run inflation differentiail: 

? e - i e = n ? - n r  ( 3 . 2 9 )  

Therefore: 

fit ~ Ct = — it) ~ (it ~ )] (3.30) 

et = (ni t  -  mj") - (p(yt + -  ̂t ' )  (3.31) 
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or 

et  = {m,  -  m.*) - 4{yt - y,*) + " »7) + (^ + A)(n? - np) (3.32) 

The reason this model is called real interest rate differential model is because the above equation can be 

written to have both nominal and read interest rate difFerentieils as economic fundcimentals. To estimate 

the model econometrically, many researchers use the following form: 

In fact, this final equation (3.33) includes both the flexible-price monetary approach amd sticky-price 

moneteiry approach as special cases. For instance, if as = 0 and 04 > 0, then model is flexible price 

monetary model. If 03 < 0 cind 0:4 = 0, then model becomes the sticky-price monetary model. 

3.2 The Currency Portfolio Approach 

As previously mentioned, King, Putnum, and Wilford (1986) point out the importance of substi-

tutability among different currencies. In the real world, baaiks and peirticipants in foreign exchange 

markets tend to hold assets denominated in different currencies. These agents sire considered to diver­

sify assets in order to maximize their utility. The currency substitution model allows domestic residents 

to hold a basket of currencies depending on the risk and expected rates of return of the specific curren­

cies. If the dollar is expected to depreciate, paurticipants will substitute the dollars for other currencies, 

say, the German Mark. Since exchange controls were removed during 1970's, it has become much easier 

for market participants to hold multiple currencies.^ Following King et al., the simple currency portfolio 

model will be reviewed in this section. Market participzmts have an incentive to hold various currencies. 

A money demand function cam be written as follows: 

where 

M'' = domestic money demanded, 

P = domestic price level, 

(t> = the proportion of money services provided by domestic money, 

y = read income, 

^MacDonald (1988) stresses the difference between the phenomenon of currency substitution and the capital mobility 
referred to by McKinnon (1982). However, the distinction between the currency substitution and capital mobility is subtle 
and difficult. 

i t  = Qi(mt -m;)  + a2(t / t  - y,*) + a3(it - ij) + 04(11? - IIJ*) (3.33) 

(3.34) 
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i  =  opportunity cost of holding money, 

u = stochastic disturbance. 

It is assumed that 0<(p<l. 1 — 0is the proportion of money services provided by foreign money. 

Residents will aJlocate their holdings of currencies depending on the degree of substitutability among 

currencies. The question is, what fcictors determine King et eil. auiswer that the integration of world 

markets for goods and financial assets, I, will determine the degree of substitutability. Although curren­

cies are ultimately imperfect substitutes because domestic currency dominates in domestic transeiction, 

the integration of world markets for goods and services will increase substitutability aunong various 

currencies. King et ed. formulate the elasticity of currency substitutability in the following fashion: 

<7 = k{I) (3.35) 

where 

a = elasticity of currency substitution, 

I  = the intensity of world market integration. 

It is assumed, from the above discussion, that ^ > 0. Although the intensity of integration is as­

sumed to be constant for simplicity, they point out that the intensity of integration depends on several 

factors such as trade barriers, T, capital controls, C, transportation cost, 6, and information avjolable 

concerning goods amd financiad meirkets, A: 

I  =  f { T , C ; e , X )  (3.36) 

where 

„ di  ^  a/ „ 5/ „ 

Trade bairriers, T ,  will hinder the intensity of the integration of world mairkets, while the availability of 

information concerning goods and asset markets. A, will enhance the intensity of the integration. 

Given the intensity of integration, /, the proportion of monetary services provided by domestic 

money, <!>, is mainly determined by two factors; the expected exchange rate relative to the current 

spot exchange rate, e®, and uncertainty associated with exchange rate expectations, V. The expected 

exchange rate relative to the current spot exchange rate, e®, will affect the behavior of currency holders. 

If domestic currency holders expect the currency to depreciate, they may shift their portfolio from 

domestic to foreign currency. An increase in uncertainty associated with the exchange rate expectations, 

V, will discourage the domestic currency holders from holding domestic currency. The proportion of 
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monetary services provided by domestic money, ©, is formulated as: 

<l> = kie',V\I) (3.38) 

The next question to ask is: how the expectation of exchange rate, e', suid uncertciinty associated with 

exchange rate expectations, V, are determined? The simplest way of formulating these two factors is; 

e' =Z(m'|m® ,/) 

de' 
^ ° (3-39) 

where 

m' = expected domestic money supply, 

ml, = expected foreign monetary expansion. 

The expected foreign monetary expansion is considered to be given by the equation: 

V = t;[var(7n')|m^,/] 

dV 
a r-7T > 0 (3-40) avzir(m®) 

where 

var(m*) = variance associated with expected domestic monetciry policy. 

An increase in the varieuice of expected domestic monetary policy raises uncertainty associated with 

exchemge rate expectations. Substituting (3.39) and (3.40) into (3.38) provides: 

<f) =  h(m',  var(m®)|m*®, I)  

d<i> 36 
< 0. a / < 0 (3-41) 

dm' 9var(m«) 

An increase in expected money supply leeids to a depreciation of the currency and an increase in the 

proportion of foreign currency. A lairger variance of monetsiry policy raises the holding cost of domestic 

currency zuid increases the proportion of foreign currency. Now, a generalized model of exchange rate 

determination can be constructed. First, the following specific money demand fimction is given: 

Af' = (3.42) 

King et al. use a growth form instead of a logeirithmic form: 

g{M'^)  -  g{P) = + Qg{y) + -ydii)  + u (3.43) 

where 

9{^)  = _ dx/dt  
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Or = real income elasticity of demand for money, or  > 0, 

7 = a semi-log parameter of demand for money, 7 < 0. 

Money supply, M' , is determined by the money authority and it satisfies: 

g(M')=g{M) (3.44) 

Money equilibrium gives: 

g{M')  = giM") = g{M) (3-45) 

Assuming highly integrated goods auid asset markets, PPP and interest parity conditions are given in 

growth terms: 

g { P ) = g i P ' ) + 9 { e )  (3.46) 

i = 2"+5(e') (3.47) 

where 

e = a spot exchange rate, 

e® = an expected exchange rate. 

By solving this system of equations, an exchange rate in growth terms is obtained: 

9{e) = g(P')  -  ag{y) -  7«f(»")  -  g{4>) -  -ydgle")  + g(M) + u (3.48) 

This equation includes the proportion of money, 4>, directly. By using (3.39) and (3.40): 

dg[e ' \M" , r ]  = Tndg{M')  

m = i ^ > 0  ( 3 . 4 9 )  

5(^1/)  = kig{M')  + k2g[vax[M')]  

0 = A(m®,var(m')|mJ,,/) (3.50) 

The fined reduced-form becomes: 

g[e\g{M"),I]  = -g{P')  -  agiv)--rdin -

-  fmdg{M^) -  k2[vaxg{M')]  -F g{M) + u 

ki <0, K2 < 0, 7m < 0 (3.51) 

This jdelds a generaJ form of the monetary approach to exchange rate determination. The finaJ equation 

states that a decrease in world price, P', an increase in world interest rate, i', and a decrease in domestic 

income, y, will result in the exchange depreciation. 
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4 THE DORNBUSCH STICKY PRICE MODEL: 

LARGE-COUNTRY CASE 

As was discussed in the previous chapter, the Dombusch's sticky price model explains the over­

shooting phenomena by introducing differences in the adjustment speed of the money market and 

goods market. Since the speed of price adjustment in the goods market is assumed to be slower than 

the speed of price eidjustment in the money market, the exchange rate overshoots its long-run target 

to compensate for slow adjustment in the goods market. This chapter will consider a simple variation 

of the Dombusch sticky price model. Further, it will introduce a new assimiption to the model, that 

is, that both domestic and foreign countries are leirge countries. This enables prices in both countries 

in the model to be endogenized. The first section will consider Dombusch's two-country sticky price 

model, then the second section will extend the model to the three-country case where eill three coimtries 

are considered to be large. 

4.1 Two-Country Case 

Here, Dombusch's smjiU-country assumption in the two-country case is replaced with the large-

country assimiption. Consider two large countries, such as Germany and the United States, since these 

countries are large, prices aie no longer assumed to be given in either country. The model will attempt 

to endogenize prices in both countries. Following Dombusch (1976a), four markets will be introduced; 

a domestic and a foreign money market and a domestic and a foreign goods market. It is assumed that 

two countries influence eaxi other only through the goods markets. The money markets are introduced 

below. 
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4.1.1 The Money Markets 

In the money meirkets, domestic and foreign interest rates will be determined in equilibrium. As in 

Dombusch (1976a), the conventional money demand functions are; 

m'^ — p = ay- 0i (4.1) 

m"' —p' = a'y '  —13'i '  (4.2) 

where 

i  = domestic nominad interest rate, 

m'^ = log of the domestic nominal quantity of money, 

p = log of the domestic price level, 

y = log of domestic real income. 

Note that the asterisks indicate foreign variables in the rest of the chapter. 

Domestic real money demzind depends only on domestic Vciriables, y,  p,  and i .  Foreign real money 

demand also depends only on foreign variables. Thus, money market equilibrium in both domestic and 

foreign money market creates the following equations: 

m'^ =m (4.3) 

m"' = m' (4.4) 

where m and m* are money supply in the money market in each country. 

4.1.2 The Goods Markets 

One assumption made in the goods mairket is that domestic demeind depends on the relative price 

of domestic goods, real income, interest rate, amd shift variables in the goods market. Since both 

countries are assumed to be large countries, the relative price of domestic goods is e — p + p' where 

e is log of exchange rate which is the dollar price of foreign currency. In Dombusch's seminad paper, 

he normadizes, without loss of generality, the log of the price of foreign goods {p' = 0) using his 

small-country assimiption. The demand fimction for domestic and foreign goods is assumed to be: 

d =—Sie — p + p')  + 4)y — Xi  + ft  (4.5) 

d'  = S'(e — p + p')  -r  o 'y '  -  XT + fx '  (4.6) 
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where 

d = log of domestic demand, 

e = log of exchange rate, 

fi = shift peirsimeter. 

The price chemge is proportional to the excess demand for goods: 

p = n[d - y] = n[-J(e - p + p") + (0 - l)y - Az + y] 

p- = n-[d- - y-] = n-[<S-(e - p + p-) + [p'  -  l)y-  -  X'i '  + fx']  

Finally, uncovered interest rate parity is introduced: 

e = i  — i '  

From (4.1) and (4.7)^: 

p = II[-<ye - (-J + ̂ )p -Sp'  +{6-1-  ̂ )y  + + fx] 

(4.2) and (4.8) provide: 

P-  =  -  5-p + {S- -  ̂)p '  + (0- - 1 - ̂ )y '  + 

Combining (4.1), (4.2) and (4.9) yields: 

1  1 . 1 1 .  Or q ' .  
'  =  * - g y - f y  

In matrix form, the three equations above are written as follows: 

e 0 1 1 
0  0-

P 
= -n<y -U{-S + i )  us 

_ P'  _ -US' n-(<y - f) 

e 

P + 

P' 

1 
-J 
ru 
0 

0 

n 

0 

'W 

0 

0 

0 

0- n-

'The equation (4.1) is solved for t and substituted in (4.7). 
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The change in exchange rate, e, will be directly affected by both domestic euid foreign vziriables; m, y,  

m' and y'. However, the change in domestic price, p. will be directly affected by domestic vairiables, 

m and y, and indirectly by foreign variables, m* and y', through foreign prices. This is because two 

countries are not directly linked in the money meirkets. The paths of the exchange rate, domestic price, 

2tnd foreign price will be obtained by solving the above system of differential equations sunultauieously. 

Later, the above model is applied to the data to investigate long-nm relations and dynamics among the 

variables. For this purpose, theoretical long-run relations must be derived from the above model. Since, 

in the long nm, aJl economic variables are in the state of equilibrium, the left-hand side of (4.10), (4.11) 

and (4.12) are set to zero, i.e., e = p = p* = 0. Then, the following 3 long-rim relations are obtained: 

1 1 . 1  1  .  a  a *  .  „  ,  ,  
ttP — -r-p — -^Tn 4- -T-m + —y — —y = 0 (4.14) 

-Se-  {-S +  ̂ )p -6p'  + i<f>-I-  ̂ )y  +^m + fz = 0 (4.15) 

S'e -  6'p + {S'  -  ̂ )p '  + {^ ' -1-  •^^)y' + + pi'  = 0 (4.16) 

(4.14) is a long-run equilibrium in the money market. (4.15) amd (4.16) 2ire equilibria in the two goods 

markets. If the following 3 variables, real exchange rate, real money supply and real GNP, are defined 

as: 

E  =  e - p  +  p ' ,  

M = m — p,  

Y = y.  

then (4.14), (4.15) and (4.16) will be rewritten as follows-: 

+ + (4.17) 

-^E+^M + (^-l-y)Y = 0 (4.18) 

S-E+ ̂ M- + {4'-1-  ̂ )Y-  = 0 (4.19) 

(4.17), (4.18) and (4.19) still have the same interpretations as (4.14), (4.15) and (4.16). These are 

long-run relations that will be examined using the data set. 

^ Shift parameters are omitted from the equations for simplicity. 
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4.2 Three-Country Case 

In this section, the two country model is extended to the three-country case by adding a third 

country where all three countries are assumed to be large countries. In the example, the home country 

is the United States and the two foreign countries are Germany and Japem. The money and goods 

market will be introduced for each country. It is assumed that these three countries interact only in 

the goods markets. 

4.2.1 The Money Markets 

The money demand depends only on domestic variables in each country. It will not depend on amy 

foreign variables: 

m'^ — p = ay — /?z (4.20) 

m"' — p'  = a'y '  — 0 ' i '  (4.21) 

rn"^ -p" = a" y" - /3"i"  (4.22) 

All the variables given here are defined as in the previous section. The single asterisk indicates the 

variables of the first foreign country (here, Germany) and the double asterisks indicate those of the 

second foreign country (Japan). Again, in the equilibrium, money demand and money supply are equsil 

in the money market of all three countries: 

m'^ = m (4.23) 

m"' = m* (4.24) 

m"'' = m" (4.25) 

4.2.2 The Goods Markets 

The demand in each country depends on read income, interest rates, relative prices of domestic goods 

and shift parameters: 

d = -6{ei  — p + p') - a-{e2 - p + p") - \-<py- Xi  + /i  (4.26) 
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d'  = S'{ei  -  p + p')  + a'{ei-62+?'— p") 

+ <!>' y '  — A' f* + /i* (4.27) 

d" = (f'*(e2 — p + p") — <7"(ei - 62+p'— p") 

+ <2i"y" - A"i" + (4.28) 

where the parameters c, A, <?i', A", <r**, 0", A**, o"' and S" are assiimed to be positive. Here 

again, all vjiriables are defined as in the previous section. Since there aire three countries in this model, 

demand for domestic goods has three sources; demand for domestic goods in the domestic market which 

depends on domestic real income amd interest rate, demand in the first foreign country, and demand in 

the second country. The term ei — p + p" captures the relative price of the domestic goods to the first 

country 's  goods and explains the first  country 's  demand for the domestic  goods.  The term ej  — p + p" 

captures the relative price of the domestic goods to the second foreign country's goods. The price 

change is proportioned to the excess demand in each country: 

p = II[d - y] = n[-<y(ei -  p + p')-  <r(e2 -  p + p") +{6- l)y — Ai + p] (4.29) 

p* = - y*] = n*[<J*(ei-p + p*)+o-'(ei - 62+p'— p") 

+ (?i*-l)y*-A*:-+/i*] (4.30) 

p" = n"[rf"-y"] = n"[r-(e2-p + p")-<r"(ei-e2+p"-p") 

+ {.<!>" -l)y" -\"i" + pr'\ (4.31) 

Combining (4.20) and (4.29) provides: 

(4.33) 

(4.32) 

P 

(4.34) 
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Assuming that uncovered interest parity holds for the two exchange rates: 

e i = i - t  (4.35) 

62 = I — t  

Then, the following equations axe obtained: 

e'l = -^[m -p-ay] + ^[m* -p" - a"y] 

62 = -^[m - p - Qry] + ^[m" - p" - oc"y"] 

Putting the above five equations in a matrix form: 

X = + ey 

where 

X' = 

X' = 

y' = 

fii 

ei 

m 

$ = 

en p p 

62 p p' 

y fi  m'  

0 

0 

-n<y 

n-(<f + 0--) 

-Wa­

rn 

0 = 

P 

P" 

y' y-

0 

0 

-no-

-nv 

n"((y" +0-") 

0 

] .  

0 

0 

0 

0 

0 

0 

0 

0 

n'x* 

0 

1 
0 

n(<y + ^-^) 

-n-<y 

-n"<y" 

o* 
8' 

0 

B-

0 

-n<j 

-n-v" 

0 0 

0 

0 

0 0 

1 

0 

n"A' 

i_ 
0" 

-no-

-nv 

n"(<j" + <j-" -

0 

a** 
fl" 

0 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

3" I 

n"(<ji" -1 - X"a" 

0 

0 

0 

0 

) n" 

In matrix 0, it can be seen that foreign variables do not affect price change in domestic price directly. 

However, foreign variables do eiffect them indirectly through foreign price levels, as seen in the previous 

section. The paths of sill five variables will be found by solving this system of the 5 equations simulta­

neously. Here, it is zdso possible to derive long-run relations among the variables. Setting the left-heind 

of (4.32), (4.33), (4.34), (4.37), and (4.38) equal to zero obtains the following 5 long-nm relations: 

-  - p - a y ]  +  - p ' - =  0  ( 4 - 4 0 )  
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-  -p-ay] + -^[m" -  p" -  Q"y"] = 0 (4.41) 

- 5ei - o-eo + (<J + o- - ̂ )p - 6p' - crp" -|- + (0 - 1 - ̂ )y + M = 0 (4.42) 

(S '  + a')ei  — o-'ea — 5'p + (J* + <7* — ^)p' — <^'p" 

+ {4>'-l- ^}y' +f^'=0 (4.43) 

- <7"ei + {6- + cr")e2 -  S"p -  a"p'  + {S" + cr" - ̂ )p" 

- 1 - + /^" = 0 (4-44) 

(4.40) amd (4.41) are long-run equilibria in the two money markets. (4.42), (4.43) and (4.44) au'e goods 

meirket  equil ibria .  Rewrit ing the above system of f ive equations in terms of real  variables^;  Ei,  En,  M, 

M', M", Y, y, and Y" ^ yields: 

+ = o (4.45) 

(4.46) 

-5Ei -<rE2 +  ̂ M + {4>-l-  y)y = 0 (4.47) 

{S'  + a')Ei  -  <7'En + ̂ M' + {4,--I-  ̂ )y" = 0 (4.48) 

-  a"E, + [S" + a")E2 + -f- {<!>" -  1 - ̂ -^)Y" = 0 (4.49) 

Later, this pairt will examine the relations sunong these real variables smd will use the error correction 

model to investigate long-run relations cind short-run dynamics among these reed variables. The purpose 

then will be to apply the cointegration techniques to the data set. 

^Again, shift variables are omitted from the equations. 
^ Each variable is defined as previously. 

El = e- p + p* , £ 2  = e — p + p", M = m -  p, 
M' =m' - p*, M" = m" - p", y = y. 
Y' = y*. K" = y". 
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5 ERROR CORRECTION MODEL (ECM) 

Since Sims' influenticd work (1980), many researchers have analyzed the djniamics of economic 

systems by using a vector autoregression (VAR) model. However, when some of the variables in the 

system are integrated of order d, i.e., the system contains d unit roots, the VAR model in level is no 

longer appropriate. To deal with the variables integrated of order d, the error correction model (ECM) 

is introduced. In the ECM, both terms in the level and in the diiference are included. The first section 

discusses VAR model, and some issues associated with the model, while the error correction model 

zmd cointegration analysis will be discussed in the second section. In econometrics, some vsiriables of 

prime interest are zmalyzed by means of the information of other variables. Usuedly, the former is called 

an endogenous variable while the latter is called an exogenous variable. In other words, endogenous 

variables are modeled conditioned on exogenous variables. It would be easier to use a conditionaJ model 

and leave the exogenous veiriables unspecified or at least model them less cairefuUy. Some researchers 

have combined the concept of weak exogeneity and the error correction model and thus are able to 

Jindyze the cointegration in the reduced dimensions. Weak exogeneity and the peirtial system model 

are the topics of the last section. 

5.1 Vector Autoregression Model 

VAR is a populeu- technique to analyze the dynamics of economic systems. Good references on the 

VAR model are Sims (1980), Hamilton (1994) and Watson (1994). In this section, some of the properties 

of a VAR are discussed. Suppose that yt is an (n x 1) vector and £t is an (m x 1) vector. Consider the 

following model: 

yt = C{L)Et (5.1) 

The model (5.1) is cjJled the structural moving average model. The vector j/t is understood to contain 

endogenous economic variables and St are exogenous shocks to the economy. St is not directly observed, 

however, it czui be observed indirectly through its effects on yt- C{L) is assumed to be a lag polynomial 
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matrix: 

oc 

C{L) = cq + ciL + cnL' + • • • = ^ ^C/cL'' (5-2) 
k=0 

where Ck is £ui (n x m) matrix and L is a lag operator. A typical element of Ck is denoted by Cij^k 

obtained from (5.1) and (5.2) as follows: 

_ dvi.t _ dyi,t+k o\ 
~ ~ "57 ( 0£j, t -k  oej , t  

is the i  th element of yt, and Sj ,t is the j  th element of £«• This c,j,fc is czdled the impulse response 

function of Sj^t for y,-,t if viewed as a function of k. Cij^k tells how much the i th element of yt+k will 

be affected by a change in the j th element of St- Now, assuming that St is independently identically 

distributed, then et ~ iid{0, Q). This implies that serial correlation aunong the exogenous vjiriables will 

be captured by C(L). Inverting C{L) in (5.1) gives the structurzJ VAR representation: 

A{L)yt = St (5.4) 

where A{L) = Aq — AkL''. In other words, exogenous variables St can be written as a function 

of current and lagged endogenous variables yt- In most of the cases, especially for empirical purposes, 

a finite order polynomial is used. Note that the invertibility of C[L) is not necesszirily the case. For 

instance, if n < m, C{L) is not invertible. By assuming n = m, C(£) is a squcire matrix and as long 

as all the roots of \C{z)\ = 0 are outside the unit circle, C{L) is invertible.^ Assuming that the lag 

polynomial of A{L) is finite and of order p, then (5.4) will be written as: 

Aoyt = Aiyt-i + Azyt-z + • • • + A^yt-p + £t (5.5) 

Watson points out that (5.5) is different from the standzird simultaneous equation setting because no 

observable exogenous vairiables are included in the equation. However, standard techniques can be 

applied to the equations for estimation purposes by treating exogenous and predetermined variables 

equeilly. Dividing both sides of (5.5) by Ao gives: 

yt = ^lyt-i + ̂ 2yt-7 + —H ̂ pyt-p +«« (5-6) 

where $,• = AQ^Ai and et = Ao^St- It is assumed that et~nd(0,E) where E = (i4o ^)Q(j4^^)'. The 

number of parameters to estimate is (n x n) x p + n x (n + l)/2. On the other hand, in the structural 

model (5.5) there are x (p+1) + n x (n +1)/2 parameters to estimate. Hence, at least restrictions 

must be imposed for identification.^ 

'Watson (1994) discusses the problems when the roots of \C{z)\  = 0 are inside and on the unit circle. 
^For identification issue, see Johnston (1983). 
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5.2 Identification Issues 

TjfpiczJly, researchers impose the restriction that the diagonal elements of i4o are equal to 1 and the 

rest of the (n — 1) restrictions are based on economic models. There are mainly two ways of imposing 

restrictions. One is to impose restrictions on the coefBcients, for example, if economic theory predicts 

that some variables should not be included in the model, the coefficients of these variables can be set 

equal to zero. Another way, a point made by Sims (1980), is to impose restrictions on the covariance 

matrix of the structural shocks Q, the matrix of contemporzmeous coefficients AQ and the matrix of 

long-run multipliers A(l)~^. If the structural shocks cire considered to be uncorrelated, the restriction 

on diagonal can be imposed. This requires n x (n — 1) restrictions and n x (n — 2)/2 additional 

necesseiry conditions are needed. The additional restrictions may come from the matrix AQ. Watson 

gives us some examples in the bivariate case in his paper. For instance, if one exogenous shock, say eo i 

does not affect an endogenous variable, yi, in a bivariate setting, a lower trizingular structure can be 

imposed on the matrix This will give n(n — l)/2 mote restrictions. Other non-triangular type of 

restrictions axe used by mamy researchers^ while researchers, such as Blanchaird and Quah (1989) smd 

King et al. (1991), prefer alternative restrictions on the matrix A(l)~^. In einy case, finding n{n — l)/2 

extra restrictions on the long-run multiplier enables the system to be identified 

5.3 Estimation 

There Jire severjJ techniques to estimate the parameters of the structured VAR; for exemiple, gen­

eralized method of moments (GMM) or the maximum likelihood (ML) method. The simplest GMM 

estimator is the indirect least squares method. The GMM technique uses the following relations with 

the OLS estimators of the reduced form: 

Ao^Ai = (pi (5.7) 

(Ao)fi(>io)' = S (5.8) 

As long as it can be assumed that the model is exactly identified, OLS can be applied to the reduced 

form to obtain 0,-, E. Given AQ, then, AI = AO^{, and Q = (^Ig ^)Z)(i4^^)'. Readers aire referred to 

Hamilton (1994) for the details. The maximum likelihood method is more frequently used for VAR 

estimation. Consider the following model: 

j/t =c + $iyt-i + h^pVt-p+St (5.9) 

^See Watson (1994) and Sims (1980) for the detail. 
'See Watson (1986), Sims (1986) Jind Blanchard and Watson (1986). 
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where ££~ifdjV(0, E). Note that St is assumed to be normally distributed. When the conditional 

likelihood function is introduced, then: 

f Y T . Y T - i ,  - . Y i \ Y o , Y - i .  •  . Y - p + i i y r , y-p+i •^) (5.10) 

The first p observations are conditioned for this function while the last T observations serve as a basis 

for estimation. The introduction of the normality assimiption gives: 

.y-p+i ~ iV(c + $i2/{_ph 

~ iV(n'xt,E) (5.11) 

where II'=[c $2 - - • $p] cind Xt=[l y(_i • • -y^.p]. Hence, the following is obtained: 

/Vr|i'r-i.--.K-p+i(w|yr-l,--- • ^-p+l •  &) 

= (2n)-''/2|E-i|V2exp[-i(y, - WxtYE-'iyt - n'r^)] (5.12) 

The joint density of observations from 1 to t ,  conditioned on yoi • • • . V-p+i.  is: 

fYuY,,-,Y,\yo,-.y-p+AyT-.--- . J/l 1^0. V-l, " "" .!/-p+l • S) 

= ,y_p+i - .9)  (5.13) 

The log likelihood function will be: 

T 

X ] - . y - p + 1  i y t \ y t - i , , y - p + i  •  S )  
t=i 

T 
= -^iog(2n) + |iog|s-M - \ i2[{yt - n'x,)'s-Hyt - n'x,)] (5.i4) 

t=i 

To find the ML estimators of 11 and E, a derivative with respect to 11 is taken and then the derivative 

is set equal to zero: 

n' = (5.15) 
t=i t=i 

The i  th row of 13' is: 

nf = ^ (5.16) 
t=i «=i 

which implies that this is an OLS estimator by regressing j/,t on if. Hence, the parameters in the VAR 

model can be estimated by applying OLS to each equation, that is, by regressing each yn on a constant 
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and p lags of all the variables in the system. To find the ML estimator of S, first, the likelihood function 

at n is evjduated: 

T 
log/v.iy.-..-- ,>'-,+1 • • •.y-p+i = 

C=1 
T 

= -^log(2n) + |log|E-M - ̂  - n'r,)] (5.17) 
t=l 

T 
Lit)  = -^log(2n) + |log|E-M (5.18) 

t=i 

Taking a derivative with respect to S and setting the derivative equal to zero, yields: 

1 ^ 
(5.19) 

t=:l 

The i  th row and i  th column of E, an, is the ML estimator of the variance for the z th equation. The 

i  th row and j  th coliman of  E,  cr , j  is  the ML est imator of  the covariance between the equation z and j .  

5.4 Hypothesis Testing 

The matrix E can be used to conduct a simple likelihood ratio test. Suppose that the number of 

lags for the variables to be included in the model must be determined. The null hypothesis is that the 

number of lags to be included is PQ and the cdtemative hypothesis is the number of lags is Pi, where 

PQ < PI- Two sets of n OLS regressions can be performed, one of which has a constant Jind Pq lags 

of the vciriables and the other, a constamt and Pi lags of the variables. These sets of OLS regressions 

yield the equations;  EQ  = ̂  Sf(Po)£t(^ 'o) ' i  the variance-covariance matrix from the first  set  of  n 

OLS regressions, and Si = ^ variance-covariance matrix from the second set 

of n OLS regressions. Likelihood ratio statistic for this test is computed by: 

2{£l - ̂ ) = TpoglEol - logjEiO (5-20) 

where £3 ^ likelihood function evaluated at E = EQ and is a likelihood function eveduated at 

E = El. It can be proved that this statistic asymptotically has with ti^(Pi — Po) degrees of freedom. 

To take account of small-sample bias, Sims (1980) recommends: 

(T-fC)[log|Sol-loglEil] (5.21) 

where K = 1 + NPI instead of (5.20). The ML estimators, n and E, are consistent estimators even if 

St is not normally distributed. Therefore, if St is independently and identically distributed with mean 
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Sc "dio.E) (5.22) 

E{£it-: j: ikt^u)  < •x.  ' i i . j .k . l  (5.23) 

and if the roots of |/n —-'"'I =0 are outside the unit circle, then the following results hold: 

, T 
(5.24) 

c=l 

where ry = L*ec(nt) 

7T - (5.25) 

(5.26) 

Vr,n.-n, U.v » ° |  |  

N/f(uec/i(Sr)  -  vechCZ)) j  \  \  0 /  \  0 

where vech is a transformation operator that transform an (n x n) matrix into an (n{n + l)/2 x I) 

vector by stacking these elements on or below the principal diagonal. The element of E22 is given by 

-t- CimO'ji for all i.J,l.m= I. • • • . n. The above reveals that the usual OLS t and F test can be 

applied asymptotically to the coefficients in each equation in VAR system. For instance, to test some 

restrictions on the coefficients, say, RFI = r. then: 

VfiRtlT -r)-^ .V(0. S Q-^)R'] (5.28) 

which implies: 

y/fiRtlT - r) A iV(0, R^tr 0 (5-29) 

where Ej- = Y^I=I ^"d QT = Consider the following statistic: 

T 
{RTIT - r)'{/?pT 0 (^Ztx;)-']/?'}(/?nT - r) (5.30) 

t=i 

This statistic asymptotically follows a \- distribution with m degrees of distribution where m is the 

number of restrictions. So far. only the unrestricted V.A.R model has been discussed. In other words, all 

the equations in the \'.\R have the same regressors. that is. a constant and lags of all the variables. If 
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restrictions are imposed on the coefficients, the coefficient estimation changes slightly. If the restriction 

that some of the variables do not have explanatory power in predicting other variables is imposed, then 

exeictly the seime variables will not be found in all equations. If yt is divided into two groupjs; yit which 

is (ni X 1) vector and y2t which is (no x 1) vector where ni + ti2 = n, corresponding lags, xu and 

are also defined that is, xu = [j/lt-i vit-z • • Vit-p]' and = bAt-i ^21-2 • •-yzt-p]'' then (5.9) can 

be written as follows: 

/ 7/T* 1 / R* \ / AI AL \ / \ / \ 
(5.31) 

where ci and cj are {ni x 1) and (no x 1) vector of constants respectively. Ai, A2, Az, and A4 are 

matrices of coefficients. If the lagged vziriables of ya help to predict yu, the restrictions that Ao = 0 

can be imposed. If this restriction is true, then yi is called block-exogenous with respect to yo- By 

grouping yu and y2t, the log likelihood function is written as follows: 

T T 
m = (5.32) 

t=i t=i 

lu = -^log(2n)-ilog|Ei:|-

|(yit - cl - A[xu - A'2X2tyt~^{yu - cl - A'^xu - AjXat) (5.33) 

ht = -Y\o%{2lL)-\ \og\H\-\{y2t-d-D'^yu-D'rTu-D'2X2t) '  

H'{y2t  -d-  Z?^yu - Dixu - -D^xof) (5.34) 

where H = S22 — S2iEj"j^Ei2, d = C2 — E2iS]^i^ci, Dq = E2iSj"i^, Di = B'l — S2iSJ"i^Ai, and D2 = 

B2 — S2 iE7 i^A2 .  Now, the log l ikel ihood fvmction (5.32) is  maximized with respect  to  Cx, Ai ,  A2,  d.  

Dq, Di D2, Ell cuid H and tramsformed back to ci, C2, Ai, A2, Bi, B2, En E12, and £22- Note that 

(ci, Ai, Ao, and En) and {d. Do, Di D2, and H) appear in lu and l2t only respectively. Therefore, 

the OLS regression of yu on a constant, iit and i2t, can be used to obtain ML estimators of ci, Ai, 

A2, and Ell. Eii is a sjunple variance-covariance matrix of residuals from these regressions. To obtain 

d, Do, Di D2, and H, y2t can be regressed on a constant, yu, xu and X2t- It is important to note that 

the residuals from the second set of regressions, i>2t = yit — d — Doyu — — -^2:21 are tmcorrelated 

with the residuaJs from the first set of regressions, iu = yu — ci — A'lXif — A2X2t- Again, consider the 

case of Ao = 0, block-exogeneity of yu. If A2 = 0, then lu is: 

lu = - Ylog(2n) - iloglEul - |(yu - cl - A'iX:,)'E-'(y^ - cl - .A'^x::) (5.35) 
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Therefore, ML estimators, ci and Ai are obtained by using OLS regression of yu on a constant and 

l i t ,  i ts  own lagged terms,  d,  ly^,  Di ,  Dn and H are obtained by regressing yj t  on a  constzint ,  yit ,  xu 

and X2t- Now, notice that B'n = 1)2, B[ = i)'i+ E2iEn^>i'i, C2 = + S2iSu^ci. The likelihood ratio 

test is used to test the null hypothesis that A2 = 0, agciin, using the statistic: 

2[£{e) - £{§0)] = rpogEii - logEu.o] (5.36) 

This will asymptotically follow a distribution with nin^P degrees of freedom. Another way of 

testing a dependency between yu and y2t is Geweke's measure of linezir dependency. For the details, 

see Geweke (1982) and Hamilton (1994). If the restrictions on the coeflSdents can not be described as 

block-recursive form, then the SUR method can be applied to the VAR. 

5.5 Error Correction Model (ECM) 

As the next chapter reveals, the variables in the data set have a unit root. That is, the variables in 

the data set are integrated of order 1. When a series of variables has a imit root®, VAR representation 

in level  (5.5)  is  no longer appropriate.  A variable yt  is  cal led integrated of  order d,  writ ten as  I{d) ,  

d = 1,2, • • •, if is /(O). A** is the i-th difference and /(O) variable is stationary. When the (n x 1) 

vector yt has a series containing a unit root, yt is called cointegrated if some linear combination of 

the individual elements of yt, 0'yt, is stationary. In other words, if yt ~ /(I) and there exists some 

vector such that P'yt ~ /(O), then yt is CeiUed cointegrated.® 0 is called the cointegrating vector. 

The cointegrating rank is the number of lineairly independent cointegrating relations and the space 

spanned by the cointegrating relations is called the cointegrating space.^ When yt is /(I) or contains 

some non-stationairy series, the traditional methodology is to take the first difference, Ayt. However, 

developments in the non-stationary time series area have shown that it is not correct to fit a vector 

autoregression to the differenced data if yt is cointegrated. When yt is cointegrated, a VAR in level can 

be still used with some modification while the VAR presentation in level (5.5) is not appropriate. It is 

the error correction model that will be used for the variables which are cointegrated. Here is a brief 

review of the error correction model that will apply to the data set in later chapters. Error correction 

representation is derived from the fact that VAR representation (5.5) can be written as: 

yt = 7?iAyt_i + i72Ayt_i H h jjp.iAyt-p+i +c + pvt-i + Bt (5-37) 

^The series could have more than one unit root. However the data indicate that none of the series contains more than 
one unit root. 

®For yt  to be cointegrated, it is not required that all components of yt are /(I). Some components can be /(O). Only 
/(I) variables are considered since the data set contains only 1(1) variables. 

' More formally, let yt be / (d) .  If /? 0 is found such that 3'yc is / (d — b) ,  then yt is called cointegrated Cl(d — 6). 3 
is called the cointegrating vector. In this case, b =: d = 1. 
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where 

yt = an (n X 1) vector, 

p  =  ̂ i  +  - - + % ,  

Vs =-[^5+1 + ^i+2 • • • + $p] fors= 1,2,-•-.p-l. 

Subtracting yt-i from both sides of (5.37), yields: 

Ayt = 771 Ayt_i + + •••  + rjp-iAyt-p+i +c + rjoyt- i  + £t (5.38) 

where 

T]o = p — I  = —[^1 + i- $p — /] = —11(1), 

n(z) = /-$iz $pzP. 

If yt has h cointegrating relations, then: 

n(l) = al3' (5.39) 

where 13' is the {h x  n)  matrix and a is the (n x h) matrix cind each row of 0' ,  6|-, is called a cointegrating 

vector. Therefore, = P'yt is a stationary (n x 1) vector. Hence, (5.38) can be written as: 

Ayt = 771 Ay:_i + rjsAyt- i  + 1- rjp^iAyt-p+i + c - a^yt- i  + £t (5.40) 

The equations (5.38) and (5.40) are called sm error correction representation. Note that aJl terms in 

(5.38) cind (5.40) are stationary because cill the first differenced terms and 0'yt-i are stationary. If yt is 

not cointegrated, then 11(1) = 0 and (5.38) becomes VAR representation in difference. When the error 

correction model is fitted to the data, the first thing that should be done is to determine the number of 

cointegrating relations among the variables, i.e., determine the rank of IT. Once the rank of 11 is found, 

the Iong-nm coefficient matrix, /? auid adjustment matrix, a can be identified. As noted, the matrix 0 

is interpreted as the long-run relation that holds among the variables and the matrix a is interpreted 

as the speed of adjustment back to the long-run equilibrium once the variables deviate away from the 

long-nm relation. Note that matrices a and /? are not uniquely determined. To determine the rank of 

n, there are two ways of testing the number of cointegrating relations; the trace test and the likelihood 

ratio test. First, consider the following hypotheses: 

Hq: Exactly k cointegrating relations among the variables exist. 

Ha- There aire n cointegrating relations where n is the number of elements of yt-

Before writing out the maximum likelihood function, the following two auxiliary regressions must be 

considered: 

Ayt = Co -i- OiAyt-i -r • —i- lip-iAyt-p.;.! -i- uot (5-41) 
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uot is an (n X 1) vector of OLS residual from the above regression (5.41). The other regression is: 

J/:-i = ci + XiAyt-i + • • • + Xp-i Ayt-p+i + "u (5.42) 

it is an (n X 1) vector of OLS residual from the above regression (5.42). We define 

where i , j  — 0,1. The ith eigenvalue A,- is obtziined from the following equation, constructed by using 

the two residueds from the above auxiliary regressions: 

|A5ii - •?io5'^o^5oi| = 0 (5.43) 

Then, the log mzudmum likelihood function under Hq is written as: 

^0 = -(^)Iog(2n) - (^) - (|)log|5oo| - (|) (5.44) 
i=l 

Under H^, the log majdmum likelihood function is: 

Ca = -(^)log(2n) - (^) - (|)logi5ool - (|) Elogd - A.) (5.45) 
J = 1 

Hence, the likelihood ratio test of Ho agsdnst Ha is computed by; 

m - e-A) = -&) E (5.46) 
i=A+l 

This is called the trace test statistic. Usually the trace test is used to determine the maximum number 

of the cointegrating relations among the variables. Another test, so-called likelihood ratio test, uses the 

following hypotheses: 

Hq:  h  cointegrating relations exist among the variables. 

Ha .'- ft + 1 cointegrating relations exist. 

For this hypothesis, the log likelihood ratio can be written as follows: 

2(^-Ci) = -nog(l-Wi) (5.47) 

When these statistics are smaller than the critical values, the hypotheses will be accepted. If the statis­

tics are larger thaui the critical values, the hypotheses will be rejected. Later chapters will demonstrate 

how to perform these two tests. It should be noted that these two statistics do not follow a stJuidEird 

distribution. Note, also, that these statistics are very sensitive with the estimated model, i.e., inclusion 

of a constant term or inclusion of a time trend. The tables for the critical values axe available in, for 

instance. Table B.IO and B.ll in Hamilton (1994). Suppose the rank of 11 is determined to be h, that 

is, k cointegrating relations among the vciriables. Once the rank of 11 is determined, the two matrices 

Q {n X h) and 3 (n x h) such that a3' = 11 can be found. It is obvious that a and 3 are not uniquely 
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determined. If restrictions are imposed on /?, typically normalization of one of the elements in 0, then, 3 

and a corresponding to such a 8 can be obtained. In economics, 0 is interpreted as the long-run relation 

to hold among the variables and 0'yt is considered to be the deviation &om the long-run relations. On 

the other hand, a is the speed of the adjustment back to the long-run relation once the variables deviate 

from the long-run relation. The model can be written out as in (5.40). When the system includes many 

variables, it becomes diflBcult to model all the veiriables in the full systems, especiziUy if the number 

of the parameters being estimated increases rapidly. One way to avoid this difficulty is to introduce 

the partiiil system model, where some of the variables, called endogenous variables, aire modeled condi­

tioned on the other variables, called exogenous vziriables. In the partial system, the latter is considered 

as strongly or, at least, weakly exogenous for the pareimeters of interest. The advantage of this method 

is that the dimensions in the system may be reduced without causing any loss of information. Of course, 

there is always a risk of imposing the wrong exogeneity assumptions in setting up the partiaJ systems. 

5.5.1 Weak Exogeneity 

The concept of exogeneity is developed in detail in Richard (1980), Engle, Hendry auid Richard 

(1983) and Hendry (1995). Hendry describes the exogeneity issues, in comparison with the causality 

issues, as follows: 

Causality issues arise when marginalizing with respect to variables and their lags. Exogeneity 

issues arise when seeking to analyse a subset of the variables given the behaviour of the 

remaining variables. 

Exogeneity issues Eirise when 2in attempt is made to model some variables, given the information of 

the other vairiables. There are three different concepts of exogeneity; weak exogeneity, strong exogeneity 

and super exogeneity. To construct the partieJ system model, only the concept of weak exogeneity is 

required, so it is the only one reviewed here. Gsnsider the joint density at time t for yt = (rs,Z{)' 

conditional on Yi-i = (Yb, j/i, • • • ,yt-i): 

where (9 = (0i, •••,&„)'. 0 is n peirameters in the joint density. Suppose that a one-to-one transformation 

/ from the originsd n parameters 6 to any new subset of n parameters A € A exists: 

DY{yt\Yt- i ,e)  = DY{x„zt\Yt .ue)  (5.48) 

A = f {e )  (5.49) 
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where 5 € 0 and A e A. Let A = (AijAo) be peirtitioned, such that A,- (ra,- x 1), where ni + no = n,  

corresponds to the factorization of the joint density into a conditional density and a meirginal density: 

= D,|j(rti.?t,V't_i,Ai)D4zt|Vt-i,A2) (5.50) 

Note that the number of the parameters in the factorization equals the number of the originztl parame­

ters. The factorization can always be achieved if Ai and At are defined to support it. Suppose that the 

joint density under analysis involves a subset, (A: x 1), of the parameters A where k <ni parameters 

of interest. For Zt to be weakly exogenous, the parsmaeters of interest ^ must be a function of Ai only: 

ip = g{Xi)  (5.51) 

A2 can not provide any information on the parameters of interest rjj. It aJso requires that Ai does not 

depend on A2 so that Aj can not be even indirectly informative to lejim about rb-. 

(Ai,A2) € (AI X A2) (5.52) 

That is, (Ai, A2) are variation free. Hence, the parameters of interest i) might be learned from the 

conditional density but not from the marginal density. When the above two requirements are met, zt is 

called weakly exogenous with respect to the parameters of interest. It is noted, as Urbain (1988) pointed 

out, that the above definition of weak exogeneity does not exclude relation between lagged xt eind Zf 

Now to reconsider the equation (5.40). Johansen (1988,1991a, 1991b) and Johansen and Juselius (1992) 

developed mziximum likelihood method in the full system model. Following the maximum likelihood 

framework, Johansen (1992) and Urbain (1993) developed a test for wezdc exogeneity. It turned out that 

testing restrictions on the matrix a provided a test for weak exogeneity if the parameters of interest 

are only the long-run peirameters. Testing exclusion of the row of the matrix a indicates the wezik 

exogeneity of the corresponding variables. For instance, if the /-th row of the matrix a is 0, then it will 

be concluded that the corresponding l-th variable in yt can be treated as a weakly exogenous variable. 

Urbain also noted that even if there is interest in the short-run parameters, the above procedure may 

be sufficient for the rejection of weak exogeneity. In his paper, Urbain also discusses a test for weak 

exogeneity when our parauneters of interest are both long-run smd short-run peirameters. In this part, 

the parameters of interest are the long-rim parameters only, so restrictions are simply imposed on the 

matrix a. 

5.5.2 Partied System Model 

After identifying weakly exogenous veiriables, the full system model (5.40) is reformulated into the 

partial system model. Suppose that yt (n x 1) is partitioned into xt (rix x 1) and zt (n^ x 1), where 
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Rx + n. = 71. xt denotes the endogenous variables amd zt the weakly exogenous variables. The model 

(5.40) is rewritten as: 

~ I (»M) 
m j }  \ e? 

When Zt is weakly exogenous, = 0 and the equation (5.53) can be written as: 

Ayt = ''' 1 Ayt_,+ yt-i + (5.54) 

The Gaussian error terms, and have marginal variances £„, and covariance Exz- The partial 

model is then given by the model for Axt conditionzd on Azt and the past: 

p-i 
Axt = c®" + ^ rjf'Ayt-i + wAzt + ef' (5.55) 

«=i 

auid the margined model is given by: 

p-i 
Azt = c' + ^ Vi^yt-i + £? (5.56) 

:=1 

ef eind Jire independently mean zero and Gaussian-distributed with vaunances Exxz = — 

and Eij. w = rjf'^ = ijfuT]' and <f '' = <f —ucr. Johansen (1995) shows that the 

maximum likelihood estimators of 0 and a" can be calculated from the conditional model. It is not 

necessary to find the rank of /? in the partiad system model. As Johansen points out, in general, it is 

advisable to determine the rank in the full system since the asymptotic analysis becomes much simpler. 

Many researchers use the results for the rank obtained from the full system model (Johamsen (1992), 

Urbain (1993)). Harboe, Johansen aind Hansen (1995) developed the test for the raink in the pairtiaJ 

system model. As the testing distribution is very complicated, depending on the nuisance parameters, 

the test for the rauik of /? in the partial system model is not discussed here. Reaiders are referred to 

their paper. As reported in the next chapter, both results for testing the ramk in the full system and in 

the partiad system aure the same with the data used here. 
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newly constructed data. The mean, standard deviations, skewness^, and excess kurtosis'* for each time 

series are found in the table. Positive (negative) skewness indicates that the distribution is skewed to 

the left (right). If skewness is zero, the distribution is symmetric about its meeui. The distribution with 

excess kurtosis greater than 0 has more mass in the tails than a Gaussian distribution with the same 

variance. 

Table 6.1 Data Summziry 

Vztriables" Mean Standard Error Skewness Excess Kurtosis 

EG -0.56 0.17 -0.98 0.44* 

EJ -5.09 0.21 0.14* -1.37 

MG 21.95 0.27 0.63 -0.81* 

MJ 27.57 0.17 0.44* -1.30 

MUS 22.76 0.16 0.58 -0.83* 

GG 23.73 0.15 0.37* -1.08* 
GJ 28.97 0.09 0.33* -1.47 

GUS 24.59 0.13 -0.06* -1.28 

"All the variables are in a logarithm. G for Germ2my, J for Japan and US 
for the United States. 

The asterisk in the table indicates that the statistic is not significantly different from zero. For 

example, the skewness of Japanese exchange rate is not significjuitly different from zero (0.14*). It 

means the distribution of Japanese exchange rate is considered to be symmetric. Thus, most of the 

series show evidence that the distributions are symmetric and that heilf of the v<iriables have normal 

tails. 

6.2 Unit Root Tests 

Mzuiy empirical researchers have found that some meicroeconomic variables are integrated of order 

one or more. Some economic time series have one or more unit roots.® When a time series has 

one or more unit roots, characteristics of the series may be different from those of the stationsiry 

series. Exogenous shocks to the non-stationeiry variable tend to last longer than eui exogenous shock 

to the stationary variables. This fact, with the presence of unit root, makes traditional estimation 

^The skewness is calculated by: 
. _ T' 

IT 
where ~ and y = !"• 

'^The kurtosis is estimated by: 
,  ( r+I)m«-3(T- l )mj 

— (T-l){T-2)(T-3) 
^See Nelson and Plosser (1982) for instance. 
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methods inappropriate. That is, when there is more than one non-stationary variable in the system, 

the conventional VAR methodology will no longer be appropriate. Hence, searching for unit root(s) is 

an important step before deciding the estimation methods. In this section, imit root tests will be briefly 

reviewed and the three main unit root tests will be discussed, those that will later be applied to the 

data set to examine the existence of a unit root or unit roots in the time series. 

There are three main tests for unit roots: the Dickey-Fuller test (the DF test), the Augmented 

Dickey-Fuller test (the ADF test) and the Phillips and Perron test (the PP test). The Dickey-Fuller 

f-test is the simplest test amiong these tests. Here, in the empirical work, the Augmented Dickey-Fuller 

test will be applied. In performing unit root tests, it is important to keep in mind what the true model 

and the estimated model are. Suppose that the data are generated by a random walk model. The true 

model is assumed to be a random wedk model: 

yt=yt-i+st (6-1) 

An AR(1) model without an intercept term, however, is considered as the estimated model: 

yt  = pyt- i  + St (6-2) 

where St is i.i.d. with mean zero and variance cn. The p in (6.2) is estimated by using an OLS 

estimation. Then, an OLS estimate, is calculated by: 

Er 
PT = 7- (6-3) 

Et=iyr 

The t-statistic is constructed by using this OLS estimate, pr, as follows: 

(£^ <£L^ (6.4) 

where is the usual OLS standard error for the estimated coefficient ^ zind sf is the OLS estimate 

of the residual variance. Although the ^-statistic tr in (6.4) is constructed in the normal way, tr has 

the following limiting distribution: 

^ ^ {i/2){[w{i)r-- i}  

Wfomr)]^dry/H<7^y/^ {Somr)?dry/^ 

where W { - )  is a Wiener process. For the derivations, see Dickey and Fuller (1981) zmd Hamilton (1994). 

In other words, tr no longer follows the ordineiry ^-distribution. Dickey amd Fuller have constructed 

tables of the criticad values by running a Monte Carlo simulation. 

In sum, when a model without an intercept term (6.2) is fitted, the f-statistics still can be obtained 

in an ordinary way but diiFerent tables should be used to find the critical values; for instance, table B.6, 

case 1 in Hamilton (1994). 
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When a model with an intercept term is fitted, the basic procedure still follows the same steps. The 

assumption that the true model is a random walk model still holds: 

yt = yt-i+et (6.6) 

An AR(1) model with an intercept term is used as the estimated model: 

yt = a + pyt-i + £t (6.7) 

The i-statistic constructed as in (6.4) is distributed in the limit as follows®: 

{/o [W^('-)]= dr -  LTo' W{r) dr]2}i/2 

An exeimple of the critical values for this case are tabulated in table B.6, case 2 in Hamilton. 

The above discussion does not take account of seriaJ correlation in errors or it is assumed that there 

was no correlation in errors (et is i.i.d.). When there is a possibility of serial correlation in errors, 

other methods are required. The Phillips-Perron unit root test" (the PP test) controls serial correlation 

by introducing correction terms into the f-statistic. The PP test adds some correction terms to the 

t-statistics, using the s£ime simple AR(1) models (6.2) and (6.7) as in the DP test. 

Assuming that the data are generated by a random walk (6.1), suppose that am AR(1) model with 

an intercept term (6.7) is fitted: 

yt = a + pyt-i + St (6.9) 

Now, St is assumed to be serially correlated and possibly heteroscedastic. If p equads 1, the convergence 

rate, T, ensures that the OLS estimate, converges in probability to 1, even if St is serially correlated. 

The t-statistic will be: 

^ _ [PT - 1) _ - 1) 

j^W[r)dr o  

^ /o'[W^(r)Pcfr-[/>(r)drp ^2 4^ 

(6.10) 

The first term in the first parenthesis is the limiting distribution oiT[pT — 1), if is i.i.d. The second 

term in the peirenthesis is the estimate of the correction for serial correlation. It C2ui be shown: 

(6")  
/om'-)]'dr-[/o^M^(r)dr]2 

®See Hamilton (1994) for the detailed derivations. 
^See Phillips (1987) and Phillips euid Perron (1988). 
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and 

1 ^ 
4 = - ar - h-yt- i f  —> E{£i)  -  70 (6.12) 

t=l 

Now to construct the modified statistic: 

(g) 'tT - {|(A- - 7O)/A} X {Ta-^ - st} (6.13) 

This modified statistic virill have the same limiting distribution as (6.8) auid the szmae table cam be used 

for the critical values. 

When an AR(1) model is fitted without an intercept term (6.2), provided that the true model is a 

random walk (6.1), the statistic is obtained by including some correction terms. In other words, the 

f-value is corrected by using correction terms and consulting a different table of the critical values; see 

table B6 case 1 in Hamilton, for an example. 

The Augmented Dickey-Fuller test has the sjune purpose as the PP unit root test. It also takes into 

account a possible seriad correlation in errors by including higher-order autoregressive terms. 

Suppose that the data are generated by the following AR(p) model: 

- 4>iL - 921- <t>pL'')yt = St (6-14) 

where St is i.i.d. with mean zero, variance a--, and a finite fourth moment. The equation (6.14) can be 

also written as: 

Vt = pvt-i + Ci^yt-i + C2^yt-2 + —!• Cp-i^ft-p+i + (6.15) 

where 

P = + 02 -i 1- 0p, 

and 

Cj = — [C»+i + 0+2 H 1-Cp] for s = 1,2, • • • ,p — 1. 

The advjuitage of using (6.15) over (6.14) is that only one of the regressors, yt, is integrated of order 

one, 1(1), while the others, Ayt-i, , Ayt-p+i, are stationary in (6.15). 

Suppose that the process contains a single unit root. Then, the model is estimated using (6.15). 

Under the null hypothesis that a = 0 and p = 1 in (6.7), the coefficients of Ayt-i for i = 1,2, - • • ,p — 1 
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satisfy: 

Vr 

Cir — Ci 

C2T — C2 

Cp-IT — Cp-l 

N 

/ o ^  

\ 0 / 

70 

71 

71 

70 

\ 7P-2 7p-3 

7P-2 

7P-3 

70 / J 

(6.16) 

(6.17) 

where 7/ = £^[(Ayt)(Aj/t_j)]. Then, the null hypotheses on the coefficients (Ci.C2,-- - .Cp-i) can be 

tested by using the standard t and F-statistic asymptotically. 

If the null hypothesis is /? = 1, then the limiting distribution of the t-statistic for this null hypothesis 

is computed as follows: 

^ {/om'-)Prfr-[/;'W^(r)drP}^ 

Note that this is the same limiting distribution as (6.8) and that the same table will be used to find 

the critical values, as in the previous case. Since the lagged values of Ay tJike into account the possible 

serial correlation in errors, no correction on the <-statistic will be necessciry. 

It is cilso interesting to test the joint null hypothesis that a = 0 and /? = 1. The F-statistic for this 

hypothesis cam be constructed as: 

where 

Ft = {hT-0;)R{s\R{^Xtx,)RY^R{hr-^)l'i. (6.18) 

- , Ayt-p+i, l,yt-i]', 

/3 = [Ci,C2,---,Cp-I.Q:./']'. 

i2 = [0./2]. 

ri 0 
7T = 

0 T 
Then the Fr statistic will be compared with the critical vaJues on the table B7 case 2 in Hamilton. 

For other cases such as the estimated regression with trend and the regression without an intercept 

term, the f-statistic zind F-statistic are formed in the similztr fashion and the corresponding tables of 

the critical values will be applied. 

There is emother test called p test based on (6.10). This test uses the following p statistic; 

r ( ^ - i )  p = 
(1 — — J2 ^p-l) 

The /[^-statistic is, in the limit, distributed as: 

^ [l/2){[W[l)f - 1} - W{1) • W{T) dr 

" /o[W^(r)]2dr-[/o'vr(r)dr]2 

(6.19) 

(6.20) 
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For this case, the table 5.B case 1 or case 2 will be used depending on whether the estimated model 

has an intercept. 

6.2.1 Practical Procedures 

This section discusses the pra^ticaJ procedures that will be followed in applying the Augmented 

Dickey-Fuller (AFD) imit root test to the data set. Hossain (1995) simmiarizes sequential procedure in 

performing the unit root tests as follows. Beginning with the least restrictive model with an intercept 

term and a time trend: 
p 

Ayt = a + + pyt-i + ̂  7,-Ayt+i_,- + et (6.21) 
1=2 

The OLS estimation is used to estimate the model (6.21) and the ii-statistic is constricted to test the 

null hypothesis that the time series includes a unit root. The null and alternative hypothesis are written 

as: 

Ho : p = Q 

H a : p < Q  ( 6 . 2 2 )  

Hossain points out that, since unit root tests usually have lower power to reject the null hypothesis, it 

could be concluded that the series does not contain a unit root if the null hypothesis is rejected. If the 

null hypothesis is not rejected, then the significance of a time trend in the presence of a unit root must 

be tested. The null hypothesis is expressed as: 

fl-Q : p = /? = 0 

HA . : not HQ (6.23) 

The ©1-statistic is used to test the above null hypothesis. If the null hypothesis is not rejected, a 

regression without a time trend is estimated: 
p 

Ayt = Q: + PVt-i + 7t Aj/t+i-t + ct (6-24) 
»=2 

If the null hypothesis is rejected, then the ti-statistic is compared with the normal by estimating (6.24) 

with OLS and obtaining the ta-statistic. The null hypothesis is the saune as the null hypothesis in 

(6.22). If the null hypothesis in not rejected, it must be determined whether or not a constant term is 

significantly different from zero with a imit root in the variable: 

Ho : p = a = 0 

HA •• not H o  (6.25) 
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The 02-statistic is used for this significance test. Finally, if this null hypothesis is not rejected, the 

regression without a constant term should be reestimated: 

p 

Ayt = pyt-i + ̂  fiAyc+i-i + et (6.26) 
1=2 

To test the presence of a unit root the <3-statistic is used. 

6.3 Some Empirical Results 

This section will examine the empirical results of the unit root tests following the procedure that 

was outlined above. The unit root tests used a total of 8 variables; 3 variables for Germany and Japan 

2uid 2 variables for the U.S. and each as tested for the existence of a unit root in the series. 

6.3.1 Germemy 

The results for the unit root tests on German data are given in Table 6.2. Considering aJl variables 

creates 82 observations. First the model is estimated (6.21).® The third column of the table gives the 

fi-statistic for the coeflScient p from the regression. The fourth column is the i^i-statistic for the null 

hypothesis that the series contains a unit root but no time trend (6.23). Then, the second regression 

(6.24) is used and the <2 and (pj-statistic Jire obtadned. The (^2-statistic is used to test the null hypothesis 

that the series includes a unit root but no constant (6.25). Finally, the seventh colimm provides the 

<3-statistic from the regression (6.26). 

Table 6.2 Unit Root Test: Germany 

Variables No.of obs. <^1 ^2 <i>2 ts 

EG 82 -1.90 1.88 -1.94 1.89 -0.61 

MG 82 -1.31 1.76 0.70 2.86 2.30 

GG 82 -1.71 1.46 0.42 2.49 2.20 

Critical value -3.47 6.58 -2.91 4.76 -1.95 

6.3.1.1 Exchange Rate 

The plots of Germein real exchange rate are shown in Figure 6.1. From the upper plot it is observed 

that German real exchange rate gradually decreased during the first half of the 1980s and reached its 

bottom around 1985. Since 1985®, the exchange rate has been increasing. In 1990s, the exchange rate 

'Lag 4 is chosen as the result of lag length test. 
^In 1985 the G-7 countries agreed at the Plaza meeting that the U.S. dollar was overvalued and that they should 

intervene in the market to help the dollar depreciate. 
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shows continuous ups amd downs. In the second plot, the first difference of the exchange rate is given. 

The first difference series indicates that the series is stationary. The exchange rate is volatile over the 

Seunple period. No strong evidence is seen that the exchange rate has become more volatile than it used 

to be, that is, the exchange rate has been always volatile over the szimple period. The fi-statistic from 

the regression (6.21) is -1.90, which is smaller than the 5% critical value -3.47^° in absolute value.^^ 

The null hypothesis that the series contains a unit root in (6.21) is not rejected. The null hypothesis 

that the series includes no time trend in the presence of a unit root is also tested. This result, the 

(^i-statistic, is shown in the fourth column of the table. The statistic 1.88 is less than the 5% critical 

value 6.58, which leads to the conclusion not to reject the null hypothesis. The exchange rate does not 

contziin a time trend in the presence of a unit root. 

Next, a regression with the time trend (6.24) is run. The ij-statistic for p obtained from the 

model(6.24) is -1.94. At the 5% significcint level, the fo-statistic is smaJler than the critical value-2.91^" 

in absolute value. The null hypothesis that the series contziins a unit root in the specification of (6.24) 

will not be rejected. Furthermore, it is necessary to determine whether or not a constant term should be 

included with a unit root. The null hypothesis is expressed in (6.25). The <^2-statistic is 1.89, which is 

smaller than 4.76. The conclusion is that the null hypothesis of no constamt term should not be rejected. 

Further testing indicates that the German exchange rate follows a specification of simple ramdom walk 

(6.1).^^ 

6.3.1.2 Money Supply 

German read money supply, plotted in Figure 6.2, exhibits its decrease from late 1970s to the mid-

1980s and shows a graduaJ increase during the mid-1980s until recently. .4jound 1990, it recorded a big 

drop, possibly explained by political changes in the country.^'* From the regression (6.21), the ti-statistic 

(-1.31) for p is obtained. The result does not indicate the rejection of the null hypothesis that the series 

includes a unit root in the specification of (6.21). The <^i-statistic gives some evidence to support the 

contention that there is no time trend with the presence of a unit root since 0i = 1.76 < 6.58. Now to 

examine the regression (6.24). The regression (6.24) gives the two statistics and <i>2 that imply the 

null hypothesis that German real money supply contains a unit root without the presence of constant 

'"The sample size is T = 82. In Hamilton (1994), when T = 50, the 5% critical vzJue is -3.50 and when T = 100, it is 
-3.45. Here, extrapolate to obtain -3.47. All other critical values are obtained in the same way. 

'^We comp2u« the test statistics and the critical values in absolute value. 
'^The critical value is found in B.6 case2 in Heunilton. 
^^The null hypothesis that all lag terms in the first difference are not significant is accepted though not shown in the 

table. 
course, German reunification is an important factor for this. 
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Figure 6.1 German Reed Exchange Rate 

tenn since both statistics are smcdler than the critical values. Finally, the fa-statistic from the model 

(6.26) lezids to the rejection of the null hypothesis that German real money supply contains a unit root 

with the specification of (6.26). 

6.3.1.3 GNP 

The plots of Germaui GNP are found in Figure 6.3. From the plot in level, it is noted that German 

GNP decreases during and after the oil crisis (1979-1982). The sjime information is foimd in the plot in 

first difference; otherwise German GNP increased over the sample period. The plot in difference shows 

that the series is stationary. From the <i-statistic, there is some evidence that German GNP includes a 

unit root (| — 1.71| < | — 3.471). The flii-statistic also indicates that the null hypothesis of no time trend 

(6.23) is not rejected since (pi = 1.46 < 6.58. The <2-statistic shows that the hypothesis of a unit root 

in the specification of (6.24) is accepted (fa = 0.42 < | — 2.91|). Similjirly, the ^2-statistic indicates that 

the hypothesis of no constant in the presence of a unit root should also be accepted. However, from the 

fs-statistic, the existence of a unit root is rejected in the specification of (6.26). 

In sum, all three German variables have shown the evidence that the variables may contain a unit 

root. 
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Figure 6.2 German Real Money Supply 

6.3.2 Japan 

The results for the unit root tests on Japanese variables are given in Table 6.3, again using the same 

3 variables; reaJ exchange rate, real money supply and real GNP. The number of observations is also 

82 as Germaui variables. Table 6.3 should be read in the same way as Table 6.2. 

Table 6.3 Unit Root Test: Japan 

Variables No. of obs. ^1 4>i <2 02 tz 

EJ 82 -2.27 2.65 -1.42 1.38 -0.90 

MJ 82 -2.34 3.00 -0.06 1.75 1.88 

GJ 82 -2.08 4.02 0.59 1.59 1.69 

Criticad value -3.47 6.58 -2.91 4.76 -1.95 

6.3.2.1 Exchange Rate 

The plots of Japanese real exchange rate a^e given in Figure 6.4. From Figure 6.4, the same tendency 

in the exchange rate movement as in Figure 6.1 can be observed. The real exchange rate gradually 

decreased during the first half of the 1980s, while since 1985, the exchange rate has been increasing 

except for the period of 1988-1990. The plot of the first difference also indicates the stationzurity of the 
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Figure 6.4 Japeinese Real Excheinge Rate 

changes around 1980 and the period of 1989-1991. A relatively large drop in money supply is noted 

during the oil crisis. 

The regression (6.21) gives the <i-statistic (-2.34) for p, thus, the null hypothesis that the Japanese 

money supply includes a unit root cannot be rejected. The i2-statistic permits the conclusion that 

there is no time trend with the presence of a unit root to be made, since = 3.00 < 6.58. So, the 

model without the time trend (6.24) will be used. The <2 and <p2-statistics support the hjrpothesis that 

the money supply cont«iins a unit root without constant term (02 = 1-75 < 4.76), in fact, it can be 

concluded that the Japanese money supply contains a unit root with the specification of no time trend 

aind no constant (6.26). 

6.3.2.3 GNP 

Japanese GNP is plotted in both level and difference in Figure 6.6. The plot shows a constant 

increase throughout the sample years. During auid after the oil crisis and after 1992, Japan experienced 

recessions, when, it is also noted, that the plot of GNP is stationeiry. From the ti amd <;ii-statistic, it is 

not possible to reject either hypothesis, (6.22) or (6.23) and the time trend is not included in the model. 

The f2-statistic from the regression (6.24) is 0.95, which is smaller than the 5% criticjil value -2.91 in 

absolute value ajid thus precludes the rejection of the hypothesis that the series contains a unit root 
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Figure 6.5 Japanese Real Money Supply 

under the specification (6.24). The <^2-statistic (1.59) is also smaller than its critical value (4.76). The 

null hypothesis that no constant term is needed with the presence of a unit root is accepted. Further 

examination implies that Japanese GNP follows a isndom walk. 

In sum, all three Japanese variables have shown evidence that they contain a unit root. 

6.3.3 The United States 

Finally, the U.S. variables are examined, as in the previous cases, all U.S. variables include 82 

observations. Here, however, only two vairiables in the U.S. data set; real money supply and GNP are 

tested. The results of the imit root tests are provided in Table 6.4. 

Table 6.4 Unit Root Test: U.S. 

Variables No.of obs. 4>i <f>2 tz 
MUS 82 2.10 3.05 0.02 0.85 1.31 

GUS 82 -2.41 2.92 -0.59 2.13 1.98 
Critical value -3.47 6.58 -2.91 4.76 -1.95 
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Figure 6.6 Japanese Real GNP 

6.3.3.1 Money Supply 

The U.S. rejJ money supply is plotted in Figrire 6.7. It is observed that the U.S. real money supply 

has been increasing gradually over the years. The United States experienced a decrease in money supply 

from 1978 to 1982 and agziin around 1988. The plot of the first difference indicates the stationarity of 

the series and that the variability of money supply increased in the middle of 1980s. 

The result exhibits some evidence of a unit root since the <i-statistic (2.10) is smaller thain the 

absolute value of the critical value (-3.47), so the null hypothesis that the series contains a imit root 

with no time trend (^i = 3.05 < 6.58) can not be rejected. The two statistics, and <1)2, suggest that 

the series contain no constzint with a unit root. In fact, the ts-statistics indicates that money supply 

also follows a random walk. 

6.3.3.2 GNP 

The plots of GNP are given in Figure 6.8, which show that GNP has been increasing since the 

mid-1970s, except for the oil crisis, the beginning of the Reagcin administration and then again around 

1991. The second plot exhibits that GNP is a stationciry series. It is also noted from the second plot 

that there was a big drop in GNP during the oil crisis. Becaxise the fi-statistic (-1.79) is smaller tham 
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Figure 6.7 U.S. Real Money Supply 

the critical value (-3.47), the null hypothesis that the GNP series includes a unit root is not rejected. 

Similarly, the null hypothesis that the series follows the specification <vith a unit root and no time tend 

(6.24) is aiccepted, since the <^i =: 2.92 < 6.58. The and (po-statistic imply that GNP does not need 

a constant with the presence of a unit root. However, the unit root test under the specification (6.26) 

is rejected since the ^a-statistic is larger than its critical value. The comparison of the i2-statistic with 

the normal value confirms the unit root under the specification (6.24). 
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7 EMPIRICAL RESULTS: COINTEGRATION ANALYSIS 

In this chapter, the focus will be on long-run relations aunong the variables created by the empirical 

results from cointegration analysis, weakly exogeneity and hj^jothesis testing on long-run relations. In 

the next chapter, short-nm dynamics among the variables will be reported. 

The analysis proceeds in the following way. First, the error correction model (5.37), discussed in 

Chapter 5. will be fitted to the data set. One characteristic of this model is that there is no differentiation 

between exogenous variables and endogenous variables, all the variables are treated equally at this stage. 

In other words, the full system model is estimated. Suppose that yt contains n variables, i.e., yt is a 

(n X 1 ) vector. The model is written as: 

Ayt = Vi^Vt-i + H i-T]k-iAyt-k+i + c- Uyt-i +et (7.1) 

After estimating the model (7.1), the trace and likelihood ratio tests will be used to determine the 

rank of 11, r. As mzmy research papers have found, these tests are very sensitive and the determination 

of the rank of 11 is a very difficult task. When the two tests give two different results, there is no 

strsiightforward way to draw conclusions.^ The trace statistic is calculated by ~ 

and the likelihood ratio statistic is computed by —!nn(l — Ar+i) where A,'s eire obtained from the 

following equations: 

1A5U-Sio5oV5OI| = 0 (7.2) 

where Sij = 'li = 0.1- ^ot and iZit are the residuals obtained by regressing Ayt 

and yt-i on the lagged differences Ayt-i, • • - , Ayt-k+i and c. 

Once the rank of 11 is determined, the two matrices a and /? can be found such that a/3' = 11 where 

Q and are (n x r) matrices. Obviously, a and 0 are not imiquely determined since there always exists 

a nonsinguleir matrix F such that FF' = I. Hence, a/3' = (QrF)(/3F)'. It is necessary to normalize /? by 

setting one of the elements to one. Then, it is possible to rewrite (7.1) by using a and 0 as follows: 

Ayt = TiiAyt-i + Ti2Ayt-i -i + r)k-iAyt-k+i + c - a^'yt-i + (7.3) 

' Many researchers use the trace test to determine the maximum «mlc of 11. However, this is not always the case. Refer 
to some examples in Johansen (1995). 
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After estimating the model (7.;?) by imposing a restriction on the rank of fl. the next step is to test for 

the existence of weak exogenous variables in the system. As in the previous chapter, the weak exogeneity 

test is performed by imposing restrictions on the matrix, Q. since the parameters of interest are long-run 

parameters only. Then, it is necessary to check whether the error correction term or deviation from 

long-run relations. J Ut-i- should be included in each equation in the system. In other words, if the 

entire row of a is 0. then the error correction term. J yc-i- should not be included in the equation 

corresponding to the row of a. Therefore, it should be concluded that the corresponding %'ariable can 

be treated as weakly e.xogenous. 

Having determined the weakly e.xogenous variables, the full system model (7.1) is now reformulated 

to the partial system model since removing the e.xogenous variables from the full system model does 

not cause any loss of information and it reduces dimensions in the system. The only information 

that is needed about weakly exogenous variables is the marginal information on how the variables are 

generated. The new system is: 

k - l  

Axt = -r ^ -t- cj + fu 
1=1 

fc-i 
Ar t  =  ^ '72 iA( / t_ , - I -C2-h  £2 :  ( " -4 )  

i = l 

where yt = (xc,Z[) and Xt is a (rir x I) vector of endogenous variables and Zt is a (n^ x 1) vector of 

weakly e.xogenous variables, 

.Vow, to explore long-run relations among the variables in this partial system model, beginning with 

the rank test in this partial system framework once again, since the distribution of the test statistic 

has been changed by reformulating the model. Here, new sets of critical values, given in Harboe et al. 

(1995) will be used with the hope that this process will reduce the number of cointegrations if many 

cointegrations are found in the full system model. 

Hypothesis testing to interpret the long-run relation matrix. 3, will help to determine whether the 

theoretical long-run relationships that were derived in Chapter 4 will be supported by the data; that 

is the 3 relations in the two-country case (4.17) - (4.19) and the 5 relations in the three-country case 

(4.45) - (4.49). Recall that, in performing hypothesis testing, the important thing is that one could test 

on the cointegrating space but not on the cointegrating vectors (Johansen 1988. 1991a). 

The final step of the analysis is to analyze short-run dynamics among the variables using the partial 

system model, which will be discussed in the following chapter. 

This chapter analyzes the two-country case; Germany-U.S., and Japan-LJ .S. case, first, followed 

by the three-country case: Germany-Japan-U.S. case. In the two-country cases. 5 variables will be 
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used; real exchange rate, home country's real money supply, foreign coimtry's real money supply, home 

country's real GNP and foreign country's real GNP. For the three country case, 8 variables will be used; 

2 real exchange rates, 3 real money supplies (home eind two foreign countries) and 3 reed GNPs. In all 

cases, the United States is always the home coimtry. 

Analytical procedures to apply to the data are essentially the same for all the cases. As described in 

the above, first, the number of the cointegrating relations among the variables which are considered to be 

long-run relationships is determined. Then, the existence of weakly exogenous vairiables is investigated 

and, if any exist, the peirtial system model is reformulated. Based on the pzirtial system model, the 

cointegrating relations wUl be interpreted. It is hoped that long-run relations suggested by the data set 

will be explained by the theoretical model, however, it is a very difficult and sensitive task to determine 

amd interpret long-run relations. 

7.1 Other EmpiricsJ Researches 

Before reporting empirical results, here is a brief review of some of the alternatives empirical research 

in the field. 

Johansen's meiximum likelihood method in cointegration framework has become more and more 

popular since his seminail work (1988). Johansen, eind other reseairchers, illustrate how to use maximum 

likelihood methodology to estimate the rank of 11 and the parameters in a and 0 using empiriccJ data 

sets. The readers are referred to Johansen (1988, 1991a,b, 1992, 1995), Johsinsen amd Juselius (1990, 

1992), Hamsen amd Juselius (1995), Hendry (1995), Hatanaka (1996) and Benerjee et al. (1993). For 

instance, in his book (1995), Johamsen uses the Australiam auid U.S. data to test the PPP and UIP. 

His data set consists of the quarterly data of log consumer indexes and the excheinge 

rate (exch), five-year treasury bond rate in both countries (i"*" aind ) from 1972:1 to 1991:1. He 

illustrates the procedure for finding cointegrating relations and formulating simple economic hypotheses 

in terms of the parameters. First, he fits the data to the model (7.1) with lag of 2. ODintegrating analysis 

finds two cointegrating relations among the variables.^ He tests the hypothesis that the interest rate 

differential is stationairy and finds that the likelihood ratio test is significant in x' distribution. He adso 

tests the hypothesis that one equation contadns the interest rate differential auad the other contains the 

real exchange rate. The result of this test is not significamt. 

Later cointegration analysis was combined with the concept of exogeneity. The concept of exogeneity 

is discussed in detail in Engle et al. (1983) and Hendry (1995). There are several concepts of exogeneity; 

^In {act, he finds that P^-^- and can be treated as weakly exogenous variables. 
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weak exogeneity, strong exogeneity and super exogeneity. Here, the concept of weak exogeneity is 

pairticularly interesting. By introducing weak exogeneity into the model, it is possible to formulate the 

pairtial system model, to make inferences on the cointegrating rank in the partial system emd estimate /? 

EUid, finally, to test hypotheses on /?. The issue of the pairtial system is discussed in Urbziin (1992, 1993), 

Johansen (1992) and Hendry (1995). Harboe et al. (1995) demonstrate how difficult it is to determine 

the cointegrating rank without modeling full system even with the assumption of wesdc exogeneity. 

Urbain (1993) applies the partial system model to model Belgium aggregate imports. His data set 

consists of quEirterly time series of import price (pm), domestic price (pd), import volume (m) suid 

real income(y) from 1964:2 to 1990:1. He applies Johamsen's procedure to the data, allowing the lag 

length to vary from 3 to 7. After examining the residuals in each case, he chooses 5 lags. He finds 

one cointegrating relation among the vaudables as the result of cointegration analysis. His focus at this 

stage is to test for the existence of weakly exogenous variables. Since his parameters of interest are 

long-rxm parameters only, he performs hypothesis testing on the matrix a in (7.3).^ Then, he treats 

import price (pm), domestic price {pd) cind real income(y) as weakly exogenous variables. He sets up 

the pairtial model, teJdng into account these weakly exogenous vjiriables. 

There are also many papers that attempted to anaJyze the behavior of the exchange rate using 

the idea of cointegration analysis. BeuUie and McMahon (1989) cite some earlier work. The idea of 

cointegration was exploited in many papers on PPP. These papers use exchauige rates and domestic and 

foreign prices that are considered to be 1(1) process. They apply OLS and Dickey-Fuller methodology 

to find a single cointegrating relation among the variables (see Baillie and Selover (1987) and Taylor and 

McMahon (1988)). There are not many papers dealing with exchange rate determination in multiple 

cointegration framework; but among those who have examined this topic aire Dibooglu (1993) and 

Dibooglu and Enders (1994). Dibooglu (1993) emd Dibooglu emd Enders (1994) analyze excheinge rate 

determination by using multiple cointegration analysis by applying Johansen's meudmum likelihood 

procedure, variance decomposition and impulse response to the empirical data. In their research, they 

investigate the two-country cases; the France-U.S. and Italy-U.S. case. The data set consists of money 

supply differential (mt — ml), price differentiaJ (pt — Pt)> GNP differential {yt — Vt), interest rate 

differential (rt — r') relative productivity differential (prt - pr^) and exchange rate (st) from 1971:3 

to 1990:4. Their theoreticad model is based on Dombusch's dependent economy model. Dornbusch's 

^ Urbain also investigates the case where the parameters of interest are not only long-run parameters but also short-run 
parameters. He discusses the testing procedure will be more complicated in this case than just performing hypothesis 
testings on a. 
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depeodent economy model is expressed by the following two equations; 

mt - m; = k - k' {j)t - p't) + r]{yt - yl) - A(rt - r^) (7.5) 

St = (pt - Pt) - (1 - 0)(pt - Pi) (7.6) 

where pt = p^ — pj, expressing the relative price of non-traded goods to traded goods. The readers 

are referred to the derivations in Chapter 4 in Dibooglu (1993). First, they performed unit root tests 

on individual vaoiables and confirmed that all the variables have one unit root. 

Next, they applied the full system model (7.1) to the data auid foimd two cointegrating relations 

among the variables for the Frsmce-U.S. case and three cointegrating relations for the Italy-U.S. case.'' 

Following the Dibooglu-derived version of Dombusch's dependent economy model, they interpreted 

these cointegrating vectors as the money market equilibrium and the modified PPP. Although they did 

not reject the money mairket equilibrium and the modified PPP when they imposed them individually 

on each cointegrating vector, they rejected both restrictions imposed on both vectors simultaneously. 

Then, they applied Choleski varieince decomposition and impulse response function technique to 

the full system model in order to analyze short-run dynamics of the model. They applied the above 

techniques to the restricted model, imposing some structures on the long-run parameters and the 

unrestricted model, which does not impose any restrictions on the long-nm parameters other than the 

rank restriction. The compairison of the two models reveails that there are some changes in the results. 

The changes indicate that the restricted model explains better than the unrestricted model. 

This part was inspired by their work. However, there are some differences between their work and this 

pzurt. Here, the theoretical model is based on the modified Dombusch sticky price model. It introduces 

the assumption that the two countries aire large countries, which mzikes it possible to endogenize the 

two prices. It also permits the model to be extended to the three-country case, maintaining the large 

coimtry assumption. While the model is estimated in the partial system fremiework, it uses the full 

system model that Dibooglu et sd. applied to test for the existence of weakly exogenous vsiriables. The 

partiad system model is used to estimate the parameters and later to perform variance decomposition 

and impulse response analysis. The following three sections will present the empirical results. 

^Dibooglu (1993) adds long-run interest rate differentiiJ (tt — i') to the model for the Italy-U.S. case. Hence, the 
model contains 7 variables for the Italy-U.S. case while the model includes only 6 vsuiables for the France-U.S. case. 
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7.2 Cointegration Analysis: Two-Country Case 

7.2.1 Germany-U.S. 

This section will discuss results from the German and U.S. data. First, the full system model (7.1) is 

estimated, applying a lag of 2, i.e., i = 2, to keep the number of the estimated parameters small. There 

is no interest in estimates of the pzirameters at this stage, later, however, the residuals are checked to 

see if the number of lags in the model is appropriate. Table 7.1 displays the univariate diagnostic 

Table 7.1 The Univzuraiiate Diagnostic Statistics: Germany-U.S. 

Equations Mean Std.Dev Skewness Kurtosis ARCH(2) Normality 

EG 0.000000 0.045449 -0.238534 2.871676 0.338 0.863 0.202 

MG 0.000000 0.017119 0.991425 6.739981 0.833 18.911 0.375 

MUS 0.000000 0.015583 0.633006 4.531138 0.437 8.150 0-338 

GG 0.000000 0.011646 -0.384460 2.931215 3.164 2.274 0.297 

GUS 0.000000 0.008793 -0.128247 3.698648 2.434 3.832 0.330 

statistics of the estimated residueJs from the 5 equations; EG (German excheinge rate) equation, MG 

(Germcin money supply) equation, MS (U.S. money supply) equation, GG (German GNP) equation amd 

GUS (U.S. GNP) equation. It presents the mean, standard deviation, skewness, and kurtosis of these 

5 residuals, where the means of the residuals from all 5 equations are observed to be essentially zero. 

Most estimates of skewness are close to zero except for the residued from the MG equation. Kurtoses 

of the residuals from the MG and the MUS ate not close to 3, indicating that the distributions of these 

residuals may have fatter tails than the normal distribution. In the sixth column, ARCH(2), the test 

statistic for ARCH effects in the residuals, is shown. It follows that with 2 degrees of freedom.® 

None of the residuals from the equations are seen to have ARCH effect. No residuals indicate evidences 

of ARCH effects.® The individual normality test is presented in the seventh column. The test statistic 

follows with 2 degrees of freedom (Shenton and Bowman (1977)) amd the residuals from the MG and 

MUS equation show some indication of violation of the normality assumption (18.91 and 8.15). 

Table 7.2 introduces the multivariate statistics of the residuals from all the equations. Here, the 

residual autocorrelations aire checked to see if the description of the data is consistent with the assump­

tion of white noise errors. The methods applied here are based on the Gaussian likelihood but the 

®The ARCH(q) statistic is computed by (T — k) x P?, where is from the auxilisuy regression: 

In this case ? = 2. In general, ARCH(q) statistic follows with q degrees of freedom. See Engle(1982) and Enders(1994). 
®In this case, 

Ho". ARCH effect exists. v.s. HA .-. No .A.RCH effect exists. 
The critical values are Xj i = 4.61 and x| os = 3.99. 
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Table 7.2 The Multivariate Diagnostic Statistics: 
Germjiny-U.S. 

LB(20) LM(1) LM(4) Normality 
531.530 13.078 27.416 38.483 

0.01 0.98 0.34 0.00 

asymptotic properties of the methods only depend on the i.i.d. assumption of the error, so that the 

violation of the normality assumption is not so serious for the conclusions. The autocorrelation and 

ARCH effects are of greater concern. 

The second row in the table provides the test statistics and the third row presents the corresponding 

p-values. LB(20) is the Ljung-Box test for residuals to check if the residuals aie autocorrelated. This 

statistic is considered to approximately follow the distribution. The LM tests for the first eind fourth 

order autocorrelation are calculated using an auxiliary regression proposed by Godfrey (1988). The 

fourth column, multivariate normality test, is the siun of 5 univariate tests, based on system residuads.^ 

While the Ljung-Box test indicates that the residuails are autocorrelated (p — value=O.Ql), the LM 

tests show some evidence that they are not autocorrelated at the first and fourth lag (p — ua/ue=0.98 

and p — value=Q.Z4). The normality test rejects the null hypothesis that all residuads are multivariately 

normally distributed, meunly because the residuals from the MG equation shows a big deviation from 

the normaJity. However, this violation is not so serious for the following anadysis. 

The hypothesis k = 2 is also tested in the model with k = i lags and sdelds a likelihood ratio test 

of LR = {T — fcp)log(|E2|/|S3|) = 23.47.® This is asymptoticailly distributed as with 25 degrees of 

freedom and gives no hint of misspecification. 

Next, a cointegration analysis is performed on Germam and U.S. variables in the full system model. 

Table 7.3 presents the resiilts of testing the number of cointegrating relations in the full system model. 

The first column gives eigenvalues obtained from the equation (7.2) and these eigenvalues are arranged 

in a descending order. The second and third column are the likelihood ratio statistic and the trace 

statistic. The 90% quantiles corresponding to each statistic are found in the sixth aind seventh column. 

The hypothesis testing is advanced by comparing Xmax and Amax(90) and Xtraee and Atrace(90). The 

Xmax statistic is used for the null amd alternative hypothesis: 

^The system residuals are defined as: 
ut = VA-i V"diag(^-'/')(c, - e) 

where A is a diagonsJ matrix of eigenvalues of the correlation matrix of the residuals and V etre the eigenvalues. See more 
details in the CATS memuzJ (1995). 
The test statistic is approximately x^-distributed with 10 degrees of freedom. 

®In general, the likelihood ratio statistic is calculated as LR = {T — fcp —m)log([E2|/|i)31) if the model includes seasonal 
dummies, where m is the number of seasonal dummies. 
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HQ: r = h cointegrating relations exist, 

HA- r = k + l cointegrating relations exist. 

^maz is larger than Amax(90), then we reject the null hypothesis. The following null and alternative 

hypothesis are tested by the trace statistic: 

HQ:  At most r = h cointegrating relations exist, 

Ha- More than r = h cointegrating relations exist. 

Mamy researchers use the Atroce test to determine the maximum number of the cointegrating relations. 

They perform the Xtraee test amd determine the upper bound for the number of the cointegrating 

relations eind use the Xmar test to confirm or determine the number of cointegrating relations. On the 

other hand, some other reseairchers use the above rank tests just for their guideline. They also use some 

other information such as plots of It is, in fact, very difficult to determine the rauik if the two 

tests show different results. The ran If should be carefully determined in reference to other information 

as well.® 

Table 7.3 The Results of Testing Cointegrating Relations: Germamy amd U.S. 

Eigenvadues Ajnax Afrace 1
 

II n — h Am ox (90) Atroce (90) 

0.3080 29.45 71.89 0 5 20.90 64.74 

0.2164 19.51 42.44 1 4 17.14 43.84 

0.1574 13.70 22.93 2 3 13.39 26.70 

0.1020 8.61 9.23 3 2 10.60 13.31 

0.0077 0.62 0.62 4 1 2.71 2.71 

Here, the following null amd alternative hypothesis serves as a start: 

HQ: r = 0 V.S. HA'- r > 0. 

To test this hypothesis, the trace statistics are used amd The Xtraee statistic corresponding to the null 

hypothesis is 71.89 which is larger than Atrace(90) = 64.74. This result implies that the null hypothesis 

should be rejected because there is no cointegrating relation aunong the 5 variables. So, it is must be 

concluded that there exists at least one cointegrating relation among the variables. The next formulated 

hypothesis is: 

HQ:  r = l  v.s. HA- r  > I.  

For this null hypothesis Afrace = 42.44 is smaller than Atrace(90) = 43.84, which leads to the acceptance 

of the null hypothesis. In the Atroce test, there is evidence that there is at most one cointegrating 

relation among those 5 variables. Now, to perform the Xmas test to conduct the following test: 

®CATS will provide some useful information such as plot of the error correction term. For instance we can 
check if the :-th error correction term is stable. 
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HQ: r = 1 V.S. HA - r — 2. 

The Xmax test indicates that the null hypothesis should be rejected against the alternative hypothesis 

since Xmax = 19.51 > Amax(90) = 17.14. Actually, the A^ox test leads to the conclusion that there 

exist 3 cointegrating relations {Xmax = 8.61 < Amax(90) = 10.60) and so, it is necessary to choose one 

cointegrating relation among the variables.^" After implementing the restriction of one cointegrating 

relation on 11 in (7.1), the error-correction model (7.1) is reestimated. That is, the restriction that the 

rank of 11 in (7.1) is one is imposed and a and 0 in (7.3) are estimated. The estimated adjustment 

parameters, a and the estimated long-r\m pairameters, /?, are shown in Table 7.4. Note that no other 

restrictions thein the nimiber of cointegrating relations have been imposed on the matrix /?. Since the 

number of cointegrating relations is one, a and 8 are (5 x 1) column vectors, these estimated column 

vectors will be called di and j^i. In general, P is interpreted as a long-run relation amiong the variables 

and a is interpreted as the speed of the adjustment towaird long-nm relations. However, this section 

will not attempt to examine the long-run relation /?, since the focus is on the partial system model, not 

on the full system model. 

Table 7.4 The Estimates of the Adjustment and 
Long-Run Parameters: d aind P 

Variables f-vailues for di A 
EG -0.002 -0.071 1.000 
MG 0.019 1.482 -1.954 

MUS -0.058 -5.045 0.975 

GG -0.010 -1.101 0.581 
GUS -0.004 -0.613 1.594 

Moving on to the partial system model, the existence of weakly exogenous variables is the first issue 

to be examined. If the parameters of interest are long-run parameters only, the existence of weakly 

exogenous variables can be tested by imposing restrictions on a. If the z-th row of a is 0, then the 

i-th equation of the system does not contain the error correction term, fiyt-i- The i-th variables can 

be treated as weaJdy exogenous. The f-values in the third column of Table 7.4 will give some idea of 

which variables may be weakly exogenous. German exchange rate (EG), Germsui money supply (MSG), 

German GNP (GG) and U.S. GNP (GUS) could all be weakly exogenous. Formally, this test will use 

X^-statistics. First, it is necessary to test to see if each row of a is individuadly 0, that is, to see if 

individual variables are weakly exogenous. The results of this test show that only the hypothesis that 

'"Researchers often encounter the cases where the two rank tests give two different conclusions. It will be a good idea 
to investigate several cases and check if the results will change drastically. 



www.manaraa.com

64 

the third row of q is 0 is rejected (x"(l) = 9-92 and p — value = 0.00) as expected. The third variable, 

U.S. money supply, can not be treated as weakly exogenous; the other 4 variables listed in the above can 

be individually weakly exogenous. The other 4 variables are tested to see if they can be simulteuieously 

weakly exogenous, the hypothesis tested here is whether or not the 4 rows of a are simultameously 0. 

The resvilts that = 2.45 and p — value = 0.65 imply that the hypothesis can not be rejected. Hence, 

the other 4 vairiables, EG, MSG, GG and GUS will be simultaneously treated as weaikly exogenous. 

Now that the 4 weakly exogenous variables are identified, the full system model is reformulated 

into the partial system model (7.4). Since there are one endogenous variable and 4 weakly exogenous 

vjiriables, xt in (7.4) consists of only one variable eind the zt conteiins 4 variables. That is, zt is a (4 x 1) 

vector. The rank test is performed in the partial system model, not in the full system model. 

Table 7.5 The Results of Testing Cointegrating 
Relations in the Partial System: Ger­
many eind U.S. 

Eigenvalues Trace Ho :r = h n~ r i y - r  Trace{90) 

0.2865 27.00 0 4 1 18.1 

Table 7.5 presents the result of the rzink test in the peirtial system model, in the fourth column is 

the number of weakly exogenous variables, here, 4. riy in the fifth column is the number of endogenous 

variables, which is 1. The critical value Trace{2Q) is tcJcen from Hzirboe et al. (1995). Since Trace = 

27.00 > 18.1 = T'race(90), the hypothesis that there is no cointegration is rejected, that is, the existence 

of one cointegration is accepted since r can not be larger than riy = 1. 

Table 7.6 shows the estimates of the long-run relation in the particil system. This long-run relation 

is only included in the MUS equation. 

The order of the variables in the first row of the table has changed to emphasize the fact that only 

MUS is endogenous amd the other 4 variables are being treated as weakly exogenous. The column vector 

Table 7.6 The Estimates of Long-Run Parameters 
in the Partial System: 

Variables /?! 

MUS 0.472 

EG 1.000 

MG -0.988 
GG -1.472 

GUS 2.489 
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.5i indicates that the following relation exists among the 5 vciriables: 

QAnMUS + EG- 0.988MG- 1.472GG + 2A89GUS = 0 (7.7) 

The coefficient of German exchange rate in the above /? is normalized. From the above relation, it can 

be seen that the German real exchange rate is negatively related to the U.S. money supply and, eilso, 

that both the German money supply zmd GNP have positive impacts on exchange rates while the U.S. 

GNP are positively related to the exchange rate. 

Now, to examine the residuals from the partid system model. Attention goes to the i.i.d. assimip-

tion, i.e., autocorrelation of the residueils. No indication of autocorrelation is found.^^ 

The next task is to interpret the estimated long-run relation in /?. The theoretical model predicts 

the 3 long-run relations among the variables, as was the case in the previous chapter. For convenience, 

here are these 3 long-run relations again; 

M-j^M'-aY + ^Y'=0 (7.8) 

+ (7.10) 

Note that, in each relation, the coefficient of the first variable is normalized. All the parameters aire 

assumed to be positive and no other assumptions are made. For example, in the first relation (7.8), the 

coefficient of M', is positive, while it is unknown whether it is greater or lesser than one, depending 

on the magnitude of /? zind 0'. Table 7.7 shows the possible signs of the parameters in the relations. 

The first relation (7.8), the money market relation, does not include exchange rate and describes the 

relation among money supplies and GNPs. The second relation (7.9) excludes the foreign money supply 

and GNP aoid the third relation (7.10) rules out the domestic variables. To more thoroughly examine 

the empiricad long-rim relation, restrictions are imposed on the long-nm parameters, 0, in the model 

(7.4). 

To implement restrictions on 0, a restriction matrix Rk is constructed, where all three relations in 

the above Me described by lineeir restrictions. Using the restriction matrix Rk, the null and alternative 

hypothesis can be written as: 

Ho:Ric0i=O fc = 1,2,3, 

HA:Rk0i¥^O = 1,2,3. 

where k implies each theoretical relation. 

'^The results are not shown here. They are similar results to Table 7.1 and Table 7.2. 
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First, the first relation (7.8) is examined to see if it explains the estimated long-run parameter Pi. 

Although a predicted pattern in signs is shown in Table 7.5, nonetheless, the restriction of exclusion of 

the exchange rate is imposed. The restriction matrix i?i (1 x 5) is as follows: 

^1 = [ 0 1 0 0 0 ] (7.11) 

The test statistic follows distribution. The results are = 15-51 and p — value = 0.00 the first 

relation is rejected. The reestimated long-run parameters with exclusion of exchange rate are shown in 

Table 7.8. 

Similarly, the second (7.9) zind third long-nm relations (7.10) could be imposed on /?i. Since the 

second relation (7.9) excludes foreign variables, this relation requires two restrictions; exclusion of for­

eign money supply and GNP. The matrix iio (2 x 5) will be written as; 

R2 = 
0  0  1 0  0  

0 0 0 1 0 
(7.12) 

Here, x^ = 12.98 and p — value = 0.00 and again, the null hypothesis that satisfies the second 

long-run relation is rejected. Table 7.9 estimate the long-nm parameters with the second restriction. 

The coeflacient of U.S. money supply is negative and this is a correct sign. The sign of U.S. GNP is 

negative zind this was not predicted by the model. 

The third relation (7.10) requires only exchange rate, foreign money supply cind GNP. The R3 matrix 

is as follows: 

R3 = 
1 0 0 0 0 

0 0 0 0 1 
(7.13) 

Again, the third relation requires two exclusion restrictions and iZa is a (2 x 5) matrix. The third long-

run relation (7.10) is rejected because x^ = 8.41 and p — value = 0.01. Table 7.10 shows the estimated 

parzmieters with the third relation. The sign of the coefficient of Germzm money supply is not correct. 

Table 7.7 The Possible Signs of Coefficients 

Equation E M* M Y' Y 
(7.8) - -1- + -

(7.9) + -
9 

(7.10) -1- 7 
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Table 7.8 The Estimates of the Long-Riin Pciram-
eters: Exclusion of Exchange Rate 

Variables 01 
MUS 1.000 
EG 

MG 0.837 

GG -4.131 

GUS 1.146 

Table 7.9 The Estimates of the Long-Run Param­

eters: Exclusion of Foreign Variables 

Variables 

MUS -0.313 

EG 1.000 
MG 

GG 

GUS -0.641 

None of the above three relations explains the long-run relation by itself. However, it may be possible 

to interpret that the cointegrating space supports some linear combination of these 3 relations. If this 

is indeed the case, it can be concluded that the long-run relation is not explained by a single relation 

listed in the above. 

7.2.2 Japan-U.S. 

The next two-country case is Japan and U.S.. Here, again, the 5 variables are; the Japeinese exchange 

rate, two money supplies amd two GNPs. First, the data is used to estimate the full system model (7.1), 

again, applying a lag of 2 to keep the model simple. The residuals from the fiill system model are 

checked to see if the i.i.d assumption is retained. In Table 7.11, the univariate diagnostic statistics of 

the residuals from the system is found. 

Most estimates of the skewness are close to 0. The kurtoses of the MUS, GJ and GUS equation are 

slightly away from 3. No residuals show ARCH effects. The residuals from the last three equations also 

individuaJIy violate normality assumption, however, it is not too serious for the einalysis of this work. 

Table 7.12 presents the multivariate diagnostic statistics. No evidence of autocorrelations among 

the residuals from the LM test is observed but, since some residuals individually violate the normality 

assumption, the multivariate normality assumption is not satisfied. 
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Table 7.10 The Estimates of the Long-Run Pa­

rameters: Exclusion of Domestic Vari­

ables 

Variables Ji 

MUS 

EG 1.000 

.VIG -0.64.5 

GG 0.193 i 

GUS 

Table 7.11 The Univarariate Diagnostic Statistics: Japan-L'.S. 

Equations Mean Std.Dev Skewness Kurtosis 1 ARCH(2) Normality R-
EJ 0.000000 0.043895 0.269863 3.193700 0.846 1.519 0.305 

MJ 0.000000 0.019166 -0.537635 2.982460 I 3.741 4.951 0.395 

MUS 0.000000 0.01.5927 0.653248 4.694602 i 0.323 9.020 0.309 

GJ 0.000000 0.011456 0.125240 4.407140 j 1.681 9.606 0.408 

GUS 0.000000 0.008522 -0.550216 4.759572 0.0.52 10.085 0.371 

When the hypothesis k = 2 in the model with k = 3 lags is tested, the likelihood ratio test yields 

LR = (T — i*p)log(|Il2|/|S3|) = 23.81. This is asymptotically distributed as with 25 degrees of 

freedoms and gives no hint of misspecification. 

Table 7.13 is the results of cointegration analysis of the full system model (7.1). This will be read 

in the same way as Table 7.3. 

From Table 7.13. it can be concluded that there are two cointegrations among these o variables. The 

Afj-gcc test demonstrates that ^ cointegrating relations exist since ^trace — ^ 2(3./O — ^trace (90). 

Although the Xmax test rejects 2 cointegrating relations against 3 cointegrating relations, two cointe-

grating relations is concluded. 

Now. implementing the restriction that the rank of IT is 2 on the full system model (7.1) and 

reestimating the model (7.2) to obtain a and '3 yields the results shown in Table 7.14. 

Since 2 cointegrating relations have been found, q and 3 are (5 x 2) matrices. The first three 

columns are associated with the first column vector of q and 3 and the second three columns are the 

second column of a and 3. At this stage we are not interested in the estimates of 0 but in identifying 

which variables can be treated as weakly exogenous. Again, the parameters of interest are long-run 

ones only so that we can identify weakly exogenous variables by testing a. By looking at the values 

for a (the third and sixth column of the table) it is suspected that EJ and GUS can be treated as 
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Table 7.12 The Multivariate Diagnostic Statistics; 
Japan-U.S. 

LB(18) LM(1) LM(4) Normality 
513.789 25.269 37.274 39.200 

0.02 0.45 0.05 0.00 

Table 7.13 The Results of Testing Cointegrating Relations: Japan-U.S. 

Eigenvalues ^max ^trace 

II n — r •^mox(90) '^troce(90) 
0.4134 42.68 105.94 0 5 20.90 64.74 

0.3671 36.60 63.26 1 4 17.14 43.84 

0.1987 17.73 26.66 2 3 13.39 26.70 

0.1056 8.93 8.94 3 2 10.60 13.31 

0.0001 0.01 0.01 4 1 2.71 2.71 

weakly exogenous since both t-vedues are smjiU. In fact, when checking weak exogeneity one by one, 

it is obtained evidence that EJ smd GUS are weakly exogenous (x" = 2.75, p — value = 0.25 for EJ 

and — 2-48, p — value = 0.29 for GUS). When simultaneously testing weaJc exogeneity of these 2 

variables, the results are obtained that = 4.66, p — value = 0.32. Hence both Japanese exchange 

rate and U.S. GNP will be treated as weakly exogenous variables. 

Now, the model is reformulated into the partial system model, taJdng account of the existence of the 

two weakly exogenous variables. Since, there are three endogenous cind two weakly exogenous variables 

in the system, the first equation in (7.3) contains 3 equations 2ind the second equation consists of 2 

equations. 

Perfonning the rank test in the partial system model gives the results below in Table 7.15. Table 7.15 

presents the result of the rank test in the partieJ system model. Since Trace = 38.49 > 28.0 = 

Trace(90), the hypothesis that there exists one cointegration is rejected. However Trace = 4.70 < 

13.2 = T'race(90) implies that two cointegrations will not be rejected. 

Table 7.16 presents the estimates of the long-nm relations in the partial system. Since there are two 

cointegrating relations, is a (5 x 2) matrix. Note also that the order of the variables have been chzmged 

because only the iirst 3 variables are treated as endogenous variables. The estimates ue normalized by 

the coefBcient of Japanese exchange rate. 

To implement restrictions on long-nm relations, the three restrictions that were used in the previous 

section au:e imposed on the vectors simultaneously. In other words, the three restrictions are tested to 

see if they will be supported by the cointegration vectors. 
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Table 7.14 The Estimates of the Adjustment and 

Long-Run Parameters: d and /? 

Veiriables <-veJues for di /?! 6^2 ^-values for d2 02 
EJ -0.001 -0.446 1.000 -0.096 -2.079 1.000 

MJ 0.002 2.753 -7.346 0.069 3.655 -2.514 

MUS 0.001 2.012 1.621 -0.068 -4.372 -0.396 

GJ 0.002 6.021 -37.009 0.008 0.725 1.381 

GUS -0.000 -1.587 50.273 -0.007 -0.795 1.485 

Table 7.15 The Results of Testing Cointegrating 
Relations in the Partid System: Japan 

and U.S. 

Eigenvalues Trace 11 Tly —r Trace{90] 

0.3997 79.32 0 2 3 46.0 

0.3445 38.49 1 2 2 28.0 

0.0570 4.70 2 2 1 13.2 

The first relation (7.8), the money market relation, is imposed on both vectors of /?, using the 

seime restriction matrix Ri in (7.11). The test results 2ire x' = 16.78 and p — value = 0.00. Hence, 

the first relation is not supported by the cointegration vectors /?. To test the second relation (7.9), 

the restriction matrix i?2 in (7.12) is imposed on the vectors of /? and shows that = 26.94 zind 

p — value = 0.00, which indicates that the second relation, the exclusion of foreign variables, is not 

supported by the cointegration vectors. However, the hypothesis that the vector supports the third 

relation (7.10) is rejected, because of the exclusion of domestic variables at 5% significamce level but 

not at 1% significance level. The results obtained are x^ = 11.61 and p — value = 0.02. 

Table 7.17 presents the estimates of the long-run parameters with the relation (7.10) implemented. 

The signs of MJ in both vectors aire not consistent with the predicted sign in Table 7.7. 

Next, the first relation, (7.8), and the third relation, (7.10), are simultaneously implemented on the 

two vectors. When the first relation (7.8) is implemented on the first vector and the third relation 

(7.10) is implemented on the second vector /?2 the results = 0.02 aund p~ value = 0.90 are obtained. 

These two relations cire accepted by the long-run relations /?. However, as in Table 7.18, the signs of 

the coefficients are not as predicted. The signs of GJ and GUS are incorrect in and the sign of MJ 

is not correct in 02-
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Table 7.16 The Estimates of Long-Run Parame­
ters in the Partial System: 0 

Variables 01 02 
MJ -1.212 -3.433 

MUS -2.800 0.423 
GJ 14.178 0.829 

EJ 1.000 1.000 

GUS -10.807 2.155 

Table 7.17 The Estimates of the Long-Rmi Pa­
rameters: Japan-U.S. imposing the re­
lation (7.10) 

Variables 01 02 
MJ -4.248 -0.462 

MUS 

GJ 4.623 2.926 

EJ 1.000 1.000 

GUS 

When the relations are reversed, i.e., the second relation on aind the first relation on 02, the 

hypothesis is again accepted although the sign patterns are not correct. 

Other combinations of the relations were attempted, however, in all cases, the h)rpotheses were not 

accepted. There was strong evidence of the existence of some relations among the variables and this 

was not what was expected. 

Table 7.18 The Estimates of Long-Run Parame­
ters: Japan-U.S. imposing the relations 

(7.8) and (7.10) 

Variables 01 02 
MJ 1.000 -3.100 

MUS -1.367 

GJ 6.125 2.926 

EJ 1.000 

GUS -6.115 



www.manaraa.com

72 

7.3 Cointegration Analysis: Three-Country Ceise 

This sectioa of the chapter reports results for the three-country case, the Germany-Japan-U.S. case. 

Instead of 5 vziriables, there are 8 variables included here; two real exchange rates, three money supplies 

cind three GNPs and the data is applied to the full system model (7.1), eJlowing the same number of 

lags as in the previous two-country cases, i.e., 2 lags. The only difference from the previous cases is 

the number of the vsiriables contained in yt- This increase in the number of variables in yt brings 

about some problems. This Ijirger number of variables potentially increases the rzink of 11, the number 

of cointegrating relations. As already seen, the larger the number of existing cointegrating relations 

becomes, the more diflScult it is to interpret the relations. This is actually what is seen in this section. 

The methodology in this section is the same one that has been applied previously. First, the full system 

model (7.1) is estimated eind checked for residuals, especiaJly for the i.i.d. assumption. Then, the 

number of the cointegrating relations among the 8 variables is determined and a and 0 estimate. 

Then, the wezJdy exogenous veiriables are identified to reduce the dimensionaJity of the system, 

which leads to the partial system model (7.4). The focus here is on the long-nm relations in the pcirtial 

system model and the attempt to interpret them by implementing some restrictions. The following 

chapter will investigate short-run dynsunics among the vziriables, based on the partial system model, 

for the three-country case as well as the two-country cases. 

7.3.1 Germany-Japan-U.S, 

This section presents the data from Germemy, Japjin euid U.S. where Germany will be treated as 

the first foreign country (one asterisk), Japan as the second foreign coimtry (two asterisks) and U.S. 

as a home coimtry (no asterisk).The variables being used in this section are Germzin exchange rate, 

Japanese exchange rate and Germauiy, Japanese and U.S. money supply and GNP. 

Table 7.19 displays the univziriate diagnostic statistics of the estimated residual from each of the 8 

equations aiter fitting the full system model (7.1), these include the mean, standard deviation, skewness, 

and kurtosis of those residuals. The means of the residuals from all 8 equations are essentizdly zero 

while most of skewnesses aire close to zero. Kurtoses of the residueds from most of equations are close 

to 3 except for the MG and MUS equation, indicating that the distributions of most of the residuads 

have normal tzuls. None of the residuals from the system has ARCH effects, which is what was hoped. 

The individual normality test is presented in the seventh column. The test statistic follows x' with 2 

degrees of freedom as previously. The residuals from the MG and MUS equation show some indication of 

'^Recall that asterisks denoted two foreign countries in the theoretical model in Chapter 4. 
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Table 7.19 The Univaxariate Diagnostic Statistics: Germany-Japan-U.S. 

Equation Mean Std.Dev Skewness Kurtosis ARCH(2) Normality 

EG 0.000000 0.044648 -0.178278 3.212537 0.589 1.281 0.230 

EJ 0.000000 0.040629 0.137878 3.425727 1.731 2.185 0.404 

MG 0.000000 0.015784 0.346324 4.664655 0.258 10.892 0.469 

MJ 0.000000 0.016543 -0.567240 3.223383 0.223 4.575 0.549 

MUS 0.000000 0.015179 0.578441 4.315739 0.211 7.070 0.372 

GG 0.000000 0.010839 -0.527354 3.315739 2.368 3.925 0.391 

GJ 0.000000 0.010365 -0.109107 3.850945 4.157 4.929 0.515 

GUS 0.000000 0.008165 -0.113216 3.604877 0.170 3.223 0.423 

Table 7.20 The Multivariate Diagnostic Statistics 

LB(20) LM(1) LM(4) Normality 

1341.708 60.644 80.000 49.787 

0.01 0.60 0.09 0.00 

violation of the normality assumption; the statistic for the residual from the MG equation is particularly 

large (10.89). 

Table 7.20 presents the multivariate statistic of residusds from adl the equations. The first row 

provides the test statistics and the second row presents the corresponding p-values. LB(20) is the 

Ljung-Box test for residuals to check if the residuals are autocorrelated and this statistic is considered 

to approximately follow the x' distribution. The fourth column, multivariate normality test, is the sum 

of 8 univariate tests, based on system residuals. While the Ljung-Box test indicates that the residuals 

cire autocorrelated [p—value = 0.01), the LM tests show no evidence that they are autocorrelated at the 

first and fourth lag. The normality test rejects the null hypothesis that adl residuals are multivariately 

normally distributed. This is mainly because the residusJs from the MG equation show a deviation 

from normality. Again, the violation of the normality assumption is not so serious for the rest of the 

analysis since it relies on the asymptotic i.i.d. assumption. 

Once more, it is necessary to test the hypothesis k = 2 in the model with k = 3 lags and to find 

likelihood ratio test LR = {T—Ap)log(|E2l/iS3l) = 69.33. This is asymptoticjilly distributed as with 

64 degrees of freedoms (83.66) and betrays no hint of misspecification. 

Table 7.21 presents the results of testing the number of cointegrating relations eunong these 8 vari­

ables in the full system model (7.1) using the seme explanation as in the previous section. First, when 

the third column Xtraee and the seventh column Atroee(90) are compaured the Xtrace test indicates that 3 

'^The test statistic is approximately -distributed with 16 degrees of freedom. 
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Table 7.21 The Results of Testing Cointegrating Relations: Ger­
many-J apein-U.S. 

Eigenvalues Xmax Xtrace II p - r  Amaar(90) Atrace (90) 
0.5966 72.62 211.86 0 8 32.26 149.99 

0.4215 43.79 139.24 1 7 28.36 117.73 

0.3344 32.57 95.45 2 6 24.63 89.37 

0.2319 21.11 62.88 3 5 20.90 64.74 

0.1880 16.66 41.77 4 4 17.14 43.84 

0.1597 13.92 25.12 5 3 13.39 26.70 

0.1229 10.49 11.20 6 2 10.60 13.31 

0.0087 0.70 0.70 7 1 2.71 2.71 

cointegrating relations against 4 cointegrating relations should not be rejected because Atrace = 62.88 is 

smaJler than the 90% critical value 64.74. The next step is to test the number of cointegrating relations 

using the Xmax statistic. Xmax = 21.11 implies that HQ: 3 cointegrating relations exist is rejected against 

HA: 4 cointegrating relations exist. However, Xmax = 16.66 suggests not to reject HQ: 4 cointegrating 

relations exist against HA- 5 cointegrating relations exist because Xmax = 16.66 < 17.14 = Amaj:(90). 

Again, it is difficult to determine the number of cointegrating relations since the two tests give different 

results. Here, it can be concluded that there exist 3 cointegrating relations among these 8 variables." 

Although the cointegrating relations ^'X can be interpreted as long-run relations in economic sense, if 

more than one cointegrating relation exists, their interpretations are not necessarily obvious and easy, 

as seen in the Japem-U.S. case. 

Table 7.22 contains the estimates of the matrix the estimated long-run pairameters. The matrix 

/? is an (8 X 3) matrix since 3 cointegrating relations were found in the cointegration einalysis. Each 

column presents a long-run relation among the 8 variables. Note that in all 3 cointegrating relations 

the coefficient of German exchange rate is normalized, i.e., its coefficient is set to one. 

The estimates of the adjustment coefficients, a, and their associated t-values are found in Table 7.23. 

The matrix d is an (8 x 3) matrix. The adjustment coefficients in a are interpreted as the speed of 

moving back to long-run relations once variables move away from the long-run equilibriimi. Most of 

these numbers aire small, indicating adjustment speed is slow in the long-rim once the system deviates 

from the long-nm equilibria. 

The existence of weakly exogenous variables in the system is verified by testing on the rows of a 

matrix. If the entire row of a is 0, then the corresponding variable will be treated as weakly exogenous. 

comp2tring results from the 2 cointegration case and the 3 cointegration case, no major changes in the results for 
the preliminar>- investigation were found. 
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Table 7.22 The Estimates of the 
Long-Run Parameters: /? 

^2 IH 
EG 1.000 1.000 1.000 

EJ -1.278 -2.991 -0.779 

MG -1.060 -0.604 1.412 

MJ 1.217 4.412 0.406 

MUS 0.186 1.432 -2.777 

GG 0.248 1.363 -7A72 

GJ 0.576 -5.203 2.870 

GUS 1.080 0.455 8.456 

Table 7.23 The Estimates of the Adjustment Pareimeters: a 

ai f-values for di d2 t-values for d2 as t-values for da 

EG 0.037 0.670 0.005 0.255 0.017 0.559 

EJ 0.141 2.712 0.039 2.145 -0.004 -0.143 

MG 0.060 3.146 0.002 0.378 0.021 1.957 

MJ -0.128 -6.456 -0.019 -2.837 0.009 0.834 

MUS -0.024 -1.277 0.027 4.145 -0.008 -0.770 

GG 0.005 0.342 0.000 0.041 0.030 3.926 

GJ -0.089 -7.198 0.008 1.958 0.015 2.124 

GUS -0.005 -0.517 -0.003 -0.732 -0.013 -2.198 

Before performing formail tests, it is suspected that at least German exchange rate (EG) and U.S. GNP 

(GUS) can be weakly exogenous since all three of their t-vzdues are small. In fact, the formal x~ 'est 

indicates these two Vciriables cam be treated as weakly exogenous (x~ = 0.67 and p—ua/ue = 0.88 for EG 

and = 3.39 and p — value = 0.33 for GUS). The third eind sixth row of a, corresponding to German 

money supply (MG) and German GNP (GG), could also be 0 since = 10.95 and p — value = 0.01 

and — 7.79 and p — value — 0.05. The other variables can not be treated as wesikly exogenous.^® 

When the four vairiables, EG, MG, GG eind GUS, were tested simultauieously, the hypothesis that all 

four variables can be weakly exogenous (x^ = 20.57 and p — value = 0.06) was accepted. 

To reformulate the fiiU system model into the pjirtial system model, EG, MG, GG and GUS are 

used as weakly exogenous variables. In the model (7.3) the endogenous variables xt will consist of the 

four variables emd the exogenous variables zt contains the four variables. 

After reformulating to the peirtial model, it is possible to test for the number of cointegrations in the 

^^The second row of a, corresponding to Japanese exchange rate, could be weakly exogenous since = 8.21 and 
p — value = 0.04. However, when testing simultaneously with other variables, the hypothesis was rejected. 
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Table 7.24 The Results of Testing Cointegrating Relations in the 

Partial System: GermEuiy-Japan-U.S. 

Eigenvalues Trace II 

Pz 

t. 1 7'race(90) 

0.5539 143.13 0 4 4 76.4 

0.4182 78.55 1 4 3 52.4 

0.2260 35.22 2 4 2 32.3 

0.1681 14.72 3 4 1 15.7 

partial system setting. The results aie shown in Table 7.24. This table is the same as Table 7.5. The 

table confirms that there exist three cointegrating relations among the variables since Trace = 14.72 < 

15.7=rrace(90). 

Table 7.25 is the result of the estimates of in the partid system. Note that the order of the 

veiriables are different because this is the partial system model and the coefficient of Japzuiese exchange 

rate is normalized. The first column of /? shows that the following relation wiU exist among the variables: 

EJ = 0.834Af7 + 0.136Mi75-i-0.501GJ + 0.774.eG 

-0.776AfG + 0.369GG+0.577Gi75 (7.14) 

In all three long-nm relations, it is noted that U.S. money supply, German exchzinge rate aind GNP are 

positively related to the Japanese exchange rate. For the other VEiriables, the signs of coefficients cem 

be both positive and negative. To investigate long-nm relations more thoroughly, more structures need 

to be imposed on the long-nm relations. 

Will these 3 cointegrating relations among the 8 variables be explained by the theoretical relations 

presented here? Recall that the model derived in the previous chapter found the following 5 theoreticad 

Table 7.25 The Estimates of the 

Long-Run Parameters in 

the Partial System: 0 

Pi 02 
EJ 1.000 1.000 1.000 

MJ -0.834 -1.501 4.766 

MUS -0.136 -0.555 -2.173 

GJ -0.501 1.790 1.212 

EG -0.774 -0.308 -0.755 

MG 0.776 0.194 -0.655 

GG -0.369 -0.603 -1.419 

GUS -0.577 0.198 -2.766 
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long-run relations, presented below for the reader's convenience: 

+ + 21^=0 (7.15) 

-SEI-CTE2 + -^M + {0-1-^)Y = 0 (7.17) 

{S- + <t')Ei - a-E2 + ^M' + [<!>'-I- ̂ )Y- = 0 (7.18) 

- a"El + (J" + (t")E2 + + {r' - 1 - = 0 (7.19) 

The first 2 relations (7.15) and (7.16) aire the SEime relations that were derived in the two-country 

case, the money market eqtiilibria in the two countries. The reason why the money market equilibrium 

conditions do not contain the third country's variables is due to the assumption that the money demand 

functions do not directly include any foreign vziriables. See (4.20), (4.21) and (4.22). The relations 

(7.17), (7.18) and (7.19) are aJso simileir to (7.9) auid (7.10) although they include two exchange rates 

in the relations unlike (7.9) and (7.10). Table 7.26^® lists the possible signs of the coefficients predicted 

by the model (7.15) - (7.19). 

To map these theoretical long-run relations to the empirical long-nm relations that were discovered 

in the cointegration analysis, the procedure of interpreting the long-run relations that will apply to 

this case are the same as in the two-country case. To do this, a series of restriction matrices Rs 

Table 7.26 The Possible Signs of Coefficients 

Equation El E2 M' M" M Y' Y" Y 

(7.15) -1- - - + 
(7.16) + - - + 
(7.17) + + -

7 

(7.18) + - + 7 

(7.19) - + + 7 

^^Note that all the variables are on left-hand side. 
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corresponding to the above 5 relations are used, written as follows^"; 

Ri = 

R2 = 

R3 = 

fi4 = 

i?5 = 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1  

(7.20) 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

For instcince, the relation (7.15) excludes 4 variables, two exchange rates and the second foreign country's 

vjiriables, from the relation. Exclusion restrictions aire imposed on these parameters. The columns 

correspond to the order of Ei, E2, M', M", M, G', G" and G. The 1 in the third row and fourth 

column in Ri, for example, implies exclusion of money supply of the second foreign country (Japan). 

The rest of the 4 matrices Rs are interpreted in a similair fashion. Note, however, that no restrictions 

are imposed on the signs of the coefficients, only implementing exclusion restrictions on the coefBcients. 

'' In the partial system model the order of the variables are EJ. MJ. MUS. GJ, EG. MG. GG and GUS. 
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Table 7.27 The Estimates of the 

Long-Run Parameters: Ger-

mein-Japan-U-S. imposing the 

relation (7.19) 

01 02 03 
EJ 1.000 1.000 1.000 

MJ -0.189 -1.900 -2.886 

MUS 

GJ -0.956 1.386 5.849 

EG -0.636 -0.305 -2.170 

MG 

GG 

GUS 

The first question to be examined is whether each of the theoretical long-run relations (7.15) - (7.19) 

will be supported by the cointegrating sp2u:e. The relation (7.15) is imposed on all three vectors and 

tested, obtaining = 78.36 and p — value = 0.00. Therefore, the hypothesis that the first relation 

(7.15) is supported by the cointegrating space is not accepted. The other 4 relations Me zJso tried and, 

except for the fifth relation (7.19), give the same results. In all the 3 cases, p—value = 0.00 and causing 

the rejection of the hypotheses that these 3 relations are supported by the cointegrating space. For the 

relation (7.19), the result is = 23.01 and p — value = 0.03. The estimates are foimd in Table 7.27. 

In comparison with Table 7.26, the coefficients of MJ in ail three vectors have a wrong sign. The signs 

of EG cure as predicted. 

When an attempt was made to impose three different relations on the three long-rtm vectors, there 

were so meuay combinations of relations on the three vectors^® that only some of the results can be 

reported here. 

Having already seen some unexpected signs of the coefficients in Table 7.25, for instance, when a 

negative relation between EJ and MJ was expected, a positive relation between these variables was 

obtained. One way to interpret this is to assume that each vector represents a linear combination of 

some relations. In other words, some different relations are embedded together in each vector. Hence, 

simply looking at the coefficients of the two variables does not make the relation between these two 

variables clear. 

In considering the relations (7.16), (7.17) eind (7.19), 6 different combinations were attempted. 

There are 60 (3 out of 5) possible cases, however 60 cases were not attempted because intuitive information from 
the estimates in Table 7.25 was used to limit the attempts. 
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Table 7.28 The Estimates of the 

Long-Run Parameters: Ger-

man-Japaji-U.S. imposing the 

relation (7.19) on /3i, (7.17) 

on /?2 and (7.16) on 02 

01 02 03 
EJ -2.311 -1.616 

MJ 2.428 1.000 

MUS 0.496 -4.983 

GJ -0.384 12.284 

EG 1.000 1.000 

MG 

GG 

GUS 1.326 -5.614 

depending on which relations are mapped on which vectors. All 6 cases eire accepted zdthough p-values 

vary from 0.05 to 0.15. However, none of these 6 cases gives the expected sign patterns of the coeflBcients. 

For instance. Table 7.28 presents the coefficient estimates of one of the 6 cases. The relation (7.19) is 

imposed on 0i, (7.17) on 02 and (7.16) on The results eire = 9-43 and p — value. = 0.15. 

Notice that the sign of MJ is incorrect in 0i again, while the sign of EJ is as predicted. In 02, both 

the sign of EJ and MUS eire incorrect. Finally, the signs of GJ and GUS are wrong in 0z- This is a 

typical result from the above 6 cases. None of the combinations satisfy the predicted sign patterns. In 

fact, this is what happened in other cases. In one more group of combinations that was accepted as the 

result of hypothesis testing of the combination of the relations (7.17), (7.18) and (7.19). Again, 6 cases 

can be considered depending on how the relations are mapped. In all 6 cases, the results are the same 

(X^ = 11.74 eind p — value = 0.07). However, it is impossible to find any combination that satisfy the 

sign patterns. For instjuice, consider the relation (7.18) on 0i, (7.19) on 02 and (7.17) on 0z- Table 7.29 

shows the coefficient estimates of this case. 

Observe that the signs of both EJ amd MG are wrong in 0\. However, all the signs in 02 turn out to 

be correct. Finally, the signs of EJ and MUS are incorrect. For the other 5 cases the results Eire similar. 

In sum, although the existence of some linear combination was found smiong the variables, their 

relations are not what the model predicted. In particular, the sign of Japanese money supply is wrong 

in most of the cases. The two cases presented here, the relations (7.17) and (7.19), where there is a 

linear combination among the vziriables contained in these relations which are station^y. However, the 

model does not predict these relations. 
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Table 7.29 The Estimates of the 
Long-Run Parameters: Ger­

man-Japan-U.S. imposing the 
relation (7.19) on /?i, (7.18) 

on p2 and (7-17) on ^ 

J3i /?2 0z 
EJ -17.649 -2.772 -1.860 

MJ 1.660 

MUS 0.608 

GJ 1.941 

EG 1.000 1.000 1.000 

MG -16.516 

GG 3.169 

GUS 1.650 
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8 SHORT-RUN DYNAMIC ANALYSIS 

The previous chapter discussed long-run relations among the variables in the partial system model. 

The error-correction (full system) model, the idea of rank of II, weak exogeneity and the partial system 

model were all applied to the data. Although the results indicated the existence of some long-nm 

relations among the variables, these long-run relations could not be well explained by the theoretical 

long-nm relation. It could be interpreted that these long-run relations among the variables are linear 

combinations of several relations. 

In this chapter, attention is focused on the short-nm dynamics of the model. It will analyze the 

shon-nm dynamics of the model based on the model found in the previous chapter zmd will report the 

resxilts for variance decompositions Jmd impulse response functions for the Germamy-U.S., Japein-U.S. 

and Germany-Japan-U.S. cases. 

8.1 Vsiriance Decomposition Analysis 

8.1.1 Germany-U.S. 

This section reports the results &om variance decomposition analysis for the Germany-U.S. case. 

Table 8.1 reports the variance decomposition anzdysis for four different forecasting horizons, giving 

the results for the full system model. To impose more restrictions on variance structure, a Choleski 

decomposition is applied.^ The order of the variables is as follows; German money (MG) ->• German 

GNP (GG) -»• U.S. GNP (GUS) -*• German exchange rate (EG) -»• U.S. money (MUS).^ It can be 

observed, as Dibooglu (1993) pointed out, that the money supplies and GNPs innovation explain the 

prepondereince of their forecast error varizmce. 

The MG innovation accounts for approximately 74% of its own forecast error variance. The EG 

innovation EJSO explains 17% of the error variance. Approximately 85% of German GNP forecast error 

variance is explained by its own innovation. The MG and MUS innovation jJso accoimt for a smcdl 

' Recall that restrictions on variance structure were mentioned when identification issue in V.A.R was discussed. 
'This order of the variables is determined based on the partial model as will be seen later. 
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Table 8.1 Variance Decomposition for Full System: Germzuiy-U.S. 

Variable Steps MG GG GUS EG MUS 

MG 1 100.00 0.00 0.00 0.00 0.00 

4 74.05 5.04 0.32 16.20 4.38 

8 73.97 5.05 0.35 16.25 4.38 
12 73.97 5.05 0.35 16.25 4.38 

GG 1 3.25 96.75 0.00 0.00 0.00 
4 4.99 84.45 0.64 3.63 6.29 
8 4.99 84.40 0.64 3.67 6.29 
12 4.99 84.40 0.64 3.67 6.29 

GUS 1 0.24 1.16 98.60 0.00 0.00 

4 2.06 1.44 91.78 2.82 1.90 

8 2.08 1.48 91.54 3.00 1.90 

12 2.08 1.48 91.54 3.00 1.90 

EG 1 2.16 1.47 0.35 96.01 0.00 

4 2.61 3.22 1.43 91.15 1.58 

8 2.61 3.22 1.44 91.14 1.58 
12 2.61 3.22 1.44 91.14 1.58 

MUS 1 4.48 2.79 5.01 8.78 78.95 

4 3.77 3.91 3.99 25.38 62.96 

8 3.77 3.91 3.99 25.39 62.94 

12 3.77 3.91 3.99 25.39 62.94 

portion of the GG error variance. 

The EG innovation accounts for almost 92% of its own variamce error and only 10% of the forecast 

error variance is explained by the other variable iimovations in this model. The other variables do not 

have much expleinatory power for the EG variance. The portion explained by the other variables is 

much smaller them what Dibooglu found.® 

Finally, the MUS forecast error variance is mainly explained by the MUS and EG innovation (63% 

and 26% respectively). In this full system model, it is observed that both money supply forecast 

variances are, to some extent, expljiined by Germeui exchange rate. In other words, the explanatory 

power of the German exchange rate for the two money supplies can not be ignored. 

In Table 8.2, the results for variance decomposition from the partiaJ system model are found. The 

order of the variables is the same as in Table 8.1. The order is determined as follows: the wezikly 

exogenous variables are followed by the endogenous variables and ordered by money supply -*• GNP -¥ 

exchange rate in each category. 

'This difference will be discussed when the problems of the innovation analysis are referred to later in the chapter. 
Recall also that Dibooglu analyzed French Francs and Italian Lira. 
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Table 8.2 Variance Decomposition for Partizd System: Germany-U.S. 

Variable Steps MG GG GUS EG MUS 

MG 1 100.00 0.00 0.00 0.00 0.00 
4 73.07 6.40 0.25 17.95 2.33 
8 72.99 6.41 0.27 18.00 2.33 
12 72.99 6.41 0.27 18.00 2.33 

GG 1 2.45 97.55 0.00 0.00 0.00 
4 4.23 88.25 0.65 2.50 4.38 
8 4.23 88.21 0.65 2.52 4.38 

12 4.23 88.21 0.65 2.52 4.38 

GUS 1 0.14 1.38 98.48 0.00 0.00 

4 1.67 1.61 92.10 2.25 2.37 

8 1.69 1.64 91.89 2.40 2.37 

12 1.69 1.64 91.89 2.40 2.37 

EG 1 2.06 1.56 0.34 96.03 0.00 

4 2.45 3.48 1.31 91.13 1.63 
8 2.45 3.48 1.32 91.12 1.63 
12 2.45 3.48 1.32 91.12 1.63 

MUS 1 3.44 5.32 5.54 8.43 77.27 

4 3.03 5.37 4.73 22.99 63.88 
8 3.03 5.37 4.73 23.00 63.87 

12 3.03 5.37 4.73 23.00 63.87 

Recall that only the U.S. money supply is treated as endogenous and the rest of the variables 

aire weakly exogenous in the model. The results from the partial system model are essentially the 

same as the results from the full system model, that is, no drastic chemges are observed. It still can 

be observed that the money and GNP innovations explain the preponderance of their forecast error 

variances. Even after the fourth queirter, moneys and GNPs explain more than 60% of their forecast 

error variances (MUS:64%, MG:73%, GUS:92% and GG:88%). Except for MG, the portion of the error 

variance explained by its own variable innovation slightly increases from the fiiU system model to the 

partial system model. For instaince, the portion of the GG forecast error variance expleiined by its own 

innovation increases from 84% to 88%. 

The EG innovation attributes to at most 18% and 23% of the forecast error variauices of MG 

and MUS. EG still has some explanatory power for both money supplies, however, the exchange rate 

innovation does not account for much of the variance of either GNP. In the varieince decomposition 

cinalysis, the order of the variables is important, thus when a different order is adopted different results 

may be obtained. 
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In general, if the correlations among the variables are small, the order of the variables is not impor­

tant while if the correlations are high, the order becomes important (Enders (1995)). This is one of the 

reasons the results differ from what Dibooglu has found. 

8.1.2 Japan-U.S. 

The results of the same analysis for the Japan-U.S. case is reported here. Table 8.3 presents the 

results for the full system model. The variable were ordered in this way; GJ —EJ —}• MUS -»• MJ 

GUS. Recall that GJ and EJ are treated as weakly exogenous variables and MUS, MJ and GUS 

are treated as endogenous variables. Although it may be difficult to justify the compzirison of the 

above results in Table 8.3 with the results in Table 8.1 in the previous section, since a different set of 

variables is treated as weakly exogenous cind the order of the variables is not the same, it still can be 

observed from the preponderance of money supplies and GNPs that the largest portion of the forecast 

varizince comes from its own iimovation. The GJ and EJ innovation each account for the largest part 

of their own forecast error variance, approximately 96% for each. The MUS innovation explains 80% 

of its own forecast error variance. In the long-rim (after 1 year), EJ also explains 18% of the MUS 

forecast variance. In the German-U.S. case, EG was the second important component in explaining the 

MUS forecast variance (Table 8.1). Again, the exchange rate has some explanatory power for the MUS 

forecast variance. 

The MJ innovation accounts for 72% of its own forecast variamce. Unlike the MUS case, the GJ 

innovation, not the EJ innovation, accounts for the second lairgest portion of the vjuiance which is as 

much as 12% of the forecast variance. The GUS forecast vzirijince explained by its own innovation is 

even lower, 66%. Approximately 27% of its own varizmce is explained by both GJ amd EJ, which are 

treated as weakly exogenous variables. 

Table 8.4 presents the results for the partial system model. The over-zJl results aire essentially the 

same as the results for the full system model in Table 8.3. The portion of the forecast variance explained 

by its own iimovation becomes slightly smaller in adl forecast error variances. In other words, the other 

vziriable innovations explain slightly larger portions of the forecast variamce and gain more explanatory 

power. 

The GJ and EJ innovation still account for more than 90% of its own forecast error vairiance respec­

tively. For MUS, the portion of forecast variance explained by the EJ innovation increases as much as 

the portion accounted for by its own innovation decreases (approximately 4.5%). The portions of the 

MUS variance accounted for by the other variables do not change. The MJ forecast variance is mainly 
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Table 8.3 Variance Decomposition for Full System: Japan-U.S. 

Veiriabie Steps GJ EJ MUS MJ GUS 
GJ 1 100.00 0.00 0.00 0.00 0.00 

4 95.63 0.53 2.33 0.72 0.80 
8 95.59 0.56 2.33 0.73 0.80 
12 95.59 0.56 2.33 0.73 0.80 

EJ 1 2.15 97.84 0.00 0.00 0.00 
4 2.06 96.36 0.11 0.76 0.72 
8 2.06 96.33 0.11 0.76 0.74 
12 2.06 96.33 0.11 0.76 0.74 

MUS 1 0.51 2.85 96.64 0.00 0.00 
4 1.53 18.08 80.19 0.14 0.07 
8 1.53 18.17 80.07 0.14 0.08 

12 1.53 18.17 80.07 0.14 0.08 

MJ 1 11.65 0.51 7.76 80.07 0.00 

4 12.60 1.96 8.52 72.88 4.02 
8 12.61 2.07 8.52 72.78 4.02 
12 12.61 2.07 8.52 72.78 4.02 

GUS 1 9.93 1.23 3.68 0.30 84.86 
4 10.45 16.09 5.31 1.14 67.01 

8 10.37 16.79 5.28 1.14 66.43 
12 10.37 16.79 5.28 1.14 66.42 

explained by MJ and GJ innovations. The MUS innovation also accounts for approximately 10% of the 

variance. The portion of the GUS variance explained by Japanese variables, mainly G J and EJ (weakly 

exogenous), becomes even larger (approximately 35%). 

8.1.3 Germany-Japein-U.S. 

This section will exaunine the results for variance decomposition for the three-country case; the 

Germany-Japaja-U.S. case. Table 8.5 gives the results for variance decomposition from the full system 

model, with the following order of the vciriables; MG -)• GG -¥ GUS -> EG —)• MUS ->• MJ ^ GJ -+ 

EJ.'' The order of the vziriables was determined as in the previous two-country cases. 

A large portion of the MG forecast error variance is explained by the MG zuid EG innovation, a 

result similar to that of the two-country (Germany-U.S.) case in Table 8.1, however; the size of the 

portion itself decreases.® The portion of the MG variance accounted for by the MUS innovation slightly 

^ The first 4 variables are being treated as weakly exogenous variables and the latter 4 variables are endogenous variables 
in the partial system model. 

®The three-country case uses more variables than the two-country case and the order of the variables has changed. It 
may not be appropriate to compeu'e the numbers from the different cases directly. 
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Table 8.4 Varicince Decomposition for Partial System: Japan-U.S. 

Variable Steps GJ EJ MUS MJ GUS 

GJ 1 100.00 0.00 0.00 0.00 0.00 
4 91.88 2.70 4.72 0.15 0.55 
8 91.70 2.86 4.73 0.15 0.56 
12 91.70 2.86 4.73 0.15 0.56 

EJ 1 2.60 97.40 0.00 0.00 0.00 
4 2.50 95.67 1.05 0.54 0.24 
8 2.51 95.64 1.06 0.54 0.25 
12 2.51 95.64 1.06 0.54 0.25 

MUS 1 0.95 4.87 94.18 0.00 0.00 
4 1.66 22.27 75.88 0.12 0.08 
8 1.66 22.37 75.76 0.12 0.09 
12 1.66 22.37 75.76 0.12 0.09 

MJ 1 17.20 0.77 7.51 74.52 0.00 
4 15.39 2.44 9.80 69.41 2.97 
8 15.38 2.58 9.79 69.30 2.97 
12 15.38 2.58 9.79 69.30 2.97 

GUS 1 10.95 0.85 5.04 0.42 82.73 
4 17.31 15.91 6.60 1.69 58.49 
8 17.16 16.82 6.62 1.68 57.73 
12 17.15 16.83 6.62 1.68 57.73 

increases from 4.83% to 7.63%. EJ, which is the third-country variable, also accounts for 6.50% of the 

forecast variance. Although this portion is small, it still suggests that the third-country variables Ccin 

not be totally ignored. 

The largest component of the GG forecast Vciriance comes from the GG innovation. This portioa 

is now larger than in the two-country case (84.40% —»• 90.59%). However, the EG innovation does not 

explain as much as in the two-country case. The third-country variables, including EJ, do not have 

much explanatory power for the GG variaince. 

The GUS innovation accounts for 82.05% of its own forecast error varizmce. It is also noted that 

German variables, MG, GG and EG, also expledn approximately 13% of the vciriamce while Japanese 

variables do not attribute to the forecast variance as much. 

92.50% of the EG forecast error variance is explained by its own innovation. The other variable 

innovations, especially the third-country variable innovations, do not have much explanatory power for 

the EG variance (less than 1%). 

For MUS, 65.3% of its forecast error vjiriance is accounted for by the MUS innovation. German 
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Table 8.5 Variance Decomposition for Fxxll System Model: Germany-Japan-U.S. 

Vairiable Lags MG GG GUS EG MUS MJ GJ EJ 

MG 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 65.26 5.30 0.29 13.44 7.66 1.42 0.31 6.33 

8 65.00 5.27 0.41 13.42 7.62 1.43 0.35 6.50 

12 64.99 5.27 0.41 13.42 7.63 1.43 0.35 6.50 

GG 1 1.44 98.56 0.00 0.00 0.00 0.00 0.00 0.00 

4 1.92 90.74 0.15 2.16 1.26 0.32 0-86 2.59 

8 1.94 90.59 0.18 2.17 1.26 0.32 0.87 2.68 

12 1.94 90.59 0.18 2.17 1.26 0.32 0.87 2.68 

GUS 1 2.33 4.64 93.04 0.00 0.00 0.00 0.00 0.00 

4 5.78 4.58 82.62 2.64 0.25 0.70 1.58 1.85 

8 5.86 4.55 82.06 2.78 0.25 0.70 1.58 2.21 

12 5.86 4.55 82.05 2.78 0.25 0.70 1.58 2.22 

EG 1 1.67 0.73 0.28 97.32 0.00 0.00 0.00 0.00 

4 1.74 2.08 1.13 92.59 1.64 0.01 0.75 0.06 

8 1.74 2.08 1.14 92.57 1.64 0.01 0.76 0.06 

12 1.74 2.08 1.14 92.57 1.64 0.01 0.76 0.06 

MUS 1 3.55 9.42 2.84 9.33 74.86 0.00 0.00 0.00 

4 3.40 8.22 2.58 16.45 65.42 0.29 0.80 2.86 

8 3.41 8.20 2.61 16.43 65.30 0.30 0.81 2.93 

12 3.41 8.20 2.62 16.43 65.30 0.30 0.81 2.93 

MJ 1 4.11 8.67 0.01 0.24 1.26 85.72 0.00 0.00 

4 2.79 6.40 2.17 2.46 3.09 67.67 5.69 9.72 

8 2.79 6.39 2.19 2.46 3.08 67.48 5.87 9.73 

12 2.79 6.39 2.19 2.46 3-08 67.48 5.87 9-73 

GJ 1 3.00 0.41 4.46 0.11 0.81 2.74 88.47 0.00 

4 2.42 1.88 3.71 5.52 2.37 2.08 76.05 5.97 

8 2.43 1.88 3.74 5.52 2.37 2.08 75.98 5.99 

12 2.43 1.88 3.74 5.52 2.37 2.08 75.98 6.00 

EJ 1 4.28 2.88 0.26 37.31 0.58 0.98 0.42 53.28 

4 6.65 2.26 4.34 28.38 0.44 1.38 1.26 55.35 

8 6.78 2.23 4.71 28.07 0.44 1.30 1.25 55.21 

12 6.79 2.23 4.72 28.06 0.44 1.30 1.25 55.21 
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variables also have some explanatory power and explain approximately 28% of the MUS variance. 

Compzired with the portion explained by these German variable innovations, the portion by the Japanese 

variable innovations is much smaller (only 4%). This asymmetry in explanatory powers of German and 

Japanese variable innovations comes from the fact that all German variables are ordered before the 

Japanese variables.® 

The largest portion (67.5%) of the MJ forecast variance is explained by the MJ innovation. Ap­

proximately 10% of the forecast vziriance is attributed to by the EJ innovation. The GJ innovation 

does not have much explanatory power. The three German vairiable innovations can not be ignored, 

although the portion accounted for by the three innovations is small (11%) and none of the individued 

innovation contributes much. In general, the portion of the Japanese forecast vairiaince explained by the 

Germein variable innovations is leirger than the portion of the German forecast variance explained by 

the Japanese variable innovations, as will be seen in the rest of the two Japanese forecast vzirizinces. 

The results eire simileir for the GJ forecast variance, GJ attributes most to its variance (76%). The 

German innovations explain approximately 10% of the GJ variance, while the EJ innovation explains 

only 55% of its own forecast vcirizuice. This portion is much smaller than any other portions explained by 

the own innovations. Interestingly, the EG innovation has some explanatory power for EJ. It accounts 

for 28% of the EJ forecast vairiance. 

The other vziriable innovations do not attribute to the EJ forecast vmance as much as the EG 

innovation. The third-country variable, EG, is important in explaining the variability of EJ. 

A similair einalysis was performed for the partial system model. The results for the ansilysis sire found 

in Table 8.6. Recall that the difference between the fiill system model sind the partial system model is 

that, in the partial system model, the first 4 variables 2ire treated as wezJdy exogenous variables and 

the last 4 as endogenous variables . 

Meeuiwhile, there is no such a distinction among the veuriables and all the vairiables are treated 

equally in the full system model. 

First, it is noted that the over-edl results do not chsmge drastically. It is still true that the largest 

component of the forecast error variance comes from its own innovation (see the diagonal of Table 8.6.) -

In many cases, the portion explained by its own innovation seems to be smaller in the partiad system 

model them in the full system model. For some forecast error variances, the portions explained by 

Germem variable (weakly exogenous) innovations become larger and the portions explained by Japanese 

variable (endogenous) innovations eire smaller in the partial system model than in the full system model, 

^ When a different order of the variables is applied, the results change. We discuss this problem later in this chapter. 
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Table 8.6 Variance Decomposition for Partial System Model: Ger­

many-Japan-U.S. 

Variable Lags MG GG GUS EG MUS MJ GJ EJ 

MG 1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 71.73 5.43 0.40 17.37 3.42 1.11 0.53 0.01 

8 71.56 5.45 0.44 17.42 3.41 1.11 0.54 0.09 

12 71.56 5.45 0.44 17.42 3.41 1.11 0.54 0.09 

GG 1 3.77 96.23 0.00 0.00 0.00 0.00 0.00 0.00 

4 5.61 78.63 0.38 2.87 7.54 0.44 3.88 0.65 

8 5.61 78.50 0.40 2.93 7.52 0.44 3.92 0.67 

12 5.61 78.50 0.40 2.93 7.52 0.44 3.92 0.67 

GUS 1 0.45 0.93 98.62 0.00 0.00 0.00 0.00 0.00 

4 2.20 0.85 88.67 1.11 1.06 1.02 0.37 4.73 

8 2.23 0.85 88.49 1.13 1.06 1.02 0.37 4.85 

12 2.23 0.85 88.49 1.13 1.06 1.02 0.37 4.85 

EG 1 2.45 0.82 0.28 96.45 0.00 0.00 0.00 0.00 

4 2.77 2.77 1.38 90.92 1.06 0.01 0.71 0.37 

8 2.77 2.79 1.43 90.80 1.06 0.01 0.72 0.44 

12 2.77 2.79 1.43 90.80 1.06 0.01 0.72 0.44 

MUS 1 2.51 5.80 5.11 9.88 76.70 0.00 0.00 0.00 

4 2.39 5.10 4.30 17.77 64.27 0.85 1.95 3.36 

8 2.39 5.10 4.30 17.77 64.25 0.86 1.97 3.37 

12 2.39 5.10 4.30 17.77 64.25 0.86 1.97 3.37 

MJ 1 3.56 7.75 0.31 0.10 2.41 85.87 0.00 0.00 

4 2.59 6.45 1.46 2.04 2.64 69.11 5.07 10.63 

8 2.59 6.45 1.46 2.05 2.69 69.01 5.12 10.62 

12 2.59 6.46 1.46 2.05 2.69 69.01 5.12 10.62 

GJ 1 3.64 1.39 2.80 0.21 1.33 2.16 88.47 0.00 

4 3.04 2.66 2.26 6.45 1.57 1.72 74.94 7.35 

8 3.04 2.68 2.29 6.46 1.58 1.72 74.86 7.38 

12 3.04 2.68 2.29 6.46 1.58 1.72 74.86 7.38 

EJ 1 7.14 2.67 0.62 38.97 0.11 2.11 0.31 48.07 

4 9.03 2.60 1.41 34.38 0.44 1.85 2.35 47.94 

8 9.03 2.60 1.42 34.37 0.45 1.85 2.35 47.94 

12 9.03 2.60 1.42 34.37 0.45 1.85 2.35 47.94 

j 
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however, this is not a clear cut phenomenon. For the U.S. variable forecast variances, the portion 

2u:counted for by the Japanese variable innovations increases as much as the portion explauned by 

Germain variable innovations increases. 

For the EG forecast variance, the portion explaiined by the EJ iimovation slightly increases (0.06% 

0.44%), but it is still a small portion. The three Japanese variable innovations have little explanatory 

power for the EG forecast variance, a little over 1%. The portion of the EJ forecast variance explained 

by the EG innovation increases from 28.06% to 34.37%. The Germzm vairiable innovations account 

for a larger portion of the EJ variance in the partial system model than in the full system model 

(approximately 37% —¥ 46%). In the partial system model, the third-country variables, in this case 

Germjm vairiables, become more important explanatory variables for EJ. Meanwhile, the EJ innovation 

attributes less to its own variance (55.21% —¥ 47.94%). It is also observed that the contributions of all 

three Japanese variable innovations to the EJ variance slightly decreases from 58% to 52%. Since aJl 

German vziriables are treated as weaJdy exogenoi;is suid all Japanese variables as endogenous, the con­

tribution of German variable innovations to Japanese forecast variances is larger than the contribution 

of Japanese variable iimovations to German forecast variamces. 

8.2 Impulse Response Analysis 

Long-nm equilibrium was estimated in the previous chapter. However, as Liitkpohl (1991) points 

out, it is not appropriate to interpret the coefficients in the long-run equilibrium equations as the long-

run effect of a unit increase in one vziriable on the other since this ignores cJl the other relations Jimong 

the vciriables summarized in the system. For instance, in the long-run equilibrium equation (7.7) the 

coefficient of German money supply is -0.988. This should not be interpreted as an increase in the 

German exchange rate of 0.988 when German money supply increases by one unit, since the other 

variables are held fixed. In the long-run, all the vsiriables in the system move so that impulse response 

anedysis is more appropriate in order to investigate the long-run relations among the variables. It is 

appropriate to apply impulse response euiaJysis to error correction model where edl the effects are on 

the first-order difference of the variables. Hence, when a positive effect on a vjuriable is observed, it is 

possible to conclude that the variables moves in a positive direction, that is, the variables increases. 

The lairger effect implies the larger change in the variables or a faster speed of change in the variable. 
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Figure 8.1 Responses to German Exchange Rate: Germany-U.S. 

8.2.1 Germany-U.S. 

Impulse response functions for the Germeiny-U.S. case are reported in Figure 8.1 - 8.5. Five different 

figures cure given for the impulse response functions from the partial system model since there are 5 

variables in the system. Figures are given in the order of the variables used in the variance decomposition 

ajialysis discussed in the previous section. Figure 8.1 shows ihe responses of 5 variables, including 

German real exchemge rate itself, to the German real exchange rate shock. The German real exchange 

rate shock will cause both the German and the U.S. money supply to increase immediately. The 

exchamge rate affects U.S. money supply more them German money supply at QQ. The effect on U.S. 

and German money supply will last for approximately 6 quarters auid, then die down. Since the effects on 

both money supplies are positive throughout time, this implies that the effect of the Germeui exchange 

rate shock on both money supplies will be permanent. The effects on Germ£U3 ajid U.S. GNP are in 

opposite directions at QQ. In the U.S., GNP responds negatively while the Germam GNP responds 

positively to the German exchange rate shock at QQ. However, the effect on U.S. GNP immediately 

turns positive at Qi. Both effects are also positive, lasting for 2 years. 

One standard deviation of the Germaui money supply shock (Figure 8.2) does not induce German 

real exchange rate to move immediately. There is no contemporaneous effect on the real exchange rate. 
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The Germcin exchcinge rate slightly appreciates for the first 2 quarters and, then the effect will die 

down. Since the effect on the real exchange rate is positive over time, the effect will be permauient. 

The Germcin money supply shock has an immediate positive effect on German GNP. As the German 

money supply shock diminishes, the effect on GNP will decrease in Germamy zmd lasts for 3 quairters. 

Again, the shock is positive over time (it turns to be slightly negative at Q3), and is considered to be 

permanent. It is apparent that German money supply shock has positive effects on the U.S. money 

supply and GNP at Qo- The U.S. money supply decreases in Qi while U.S. GNP keeps increasing 

for 6 queirters. The effect on U.S. money supply may be considered temporary, since it fluctuates in 

both negative eind positive direction, but the effect on U.S. GNP is permanent. Therefore, the Germzui 

money supply increases both German and U.S. GNP in this model. 

Responses To MSG 

o.ijo — 

Responses To MSG 

\ 
0.6 — V 

V 0.4 — \ 
\ 

0.2 — 

0 . 0  - » • • • •  • •  

.02 -J 0 1 2 3 4 5 6 7 8 9  
Responsas To MSG 

0.02 — 

•0.( 

Figure 8.2 Responses to German Money Supply: Germany-U.S. 

In Figure 8.3 similar results can be observed. The U.S. money supply shock does not have a 

contemporaneous effect on exchange rate aind it will lead to exchainge rate appreciation at Qi. Although 

the effect goes down to almost zero at Q2, over time the effect on the exchange rate is positive and 

seems to be permanent. German money supply follows the exchange rate auid it seems that it moves 

in order to offset the exchamge rate appreciation. The U.S. money supply shock is negatively related 

to the German GNP. German GNP does not move contemporaneously and decreases at when the 

U.S. money supply shock occurs. At Qo: German GNP moves in a positive direction and offsets the 
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negative effect at Qi,  but the overall effect may not be as large as the positive offset. The U.S. GNP 

does not initially move and increases a.t Qi- The effect will continue for approximately 1 year and is 

considered to be a permanent effect. The effect on both money supplies and GNPs will die down after 

the sixth quarters. 
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Figure 8.3 Responses to U.S. Money Supply: Germany-U.S. 

The German GNP shock (Figure 8.4) does not have contemporaneous effects on the exchange rate 

or the German money supply. The effect on the Germein exchemge rate is a rise a.t Qi, which will not 

diminish for approximately 2 years, a permzinent effect. The German GNP shock does not immediately 

increase Germaui money supply. As the exchcinge rate appreciates, the German monetary authority 

intervenes in the market in order to slow the fluctuations of the exchjuige rate down. After the money 

supply increases for approximately 4 qucirters, it stops increasing when the monetary authority does 

some fine tuning. The monetary authority acts passively, responding to the GNP shock and the exchange 

rate. The effects on the German money supply are also permament. The U.S. money supply increases 

contemporaneously at Qo juid the effect is positive over time. The German GNP shock on U.S. GNP is 

also positive. It will have a small positive effect on U.S. GNP. This effect continues for approximately 

4 quarters and is considered to be permanent. 

The U.S. GNP shock (Figure 8.5) does not have contemporaneous effects on the exchange rate, the 

German money supply or the German GNP but it does have some effect on the U.S. money supply. The 
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Figure 8.4 Responses to Gennein GNP: GermeUiy-U.S. 

U.S. money supply responds positively to U.S. GNP shock when the U.S. money authority passively 

reacts to the GNP shock by increasing the money supply in the economy. The Germem real exchamge 

rate depreciates at Qi and the German money authority decreases the German money supply to induce 

the exchjinge rate to appreciate. Due to their effort, the speed of the depreciation decreases after Qi. 

Since the effect on the exchange rate is negative over time, the U.S. GNP shock has a permeinent 

negative effect on the exchange rate, similarly German money supply will decrease in the long run. 

Table 8.7 summarizes the above results for impulse responses. The arrows indicate long-run per-

mainent effects of the shocks. It indicates that the effects of the shocks are temporary rather than 

permanent. 

Table 8.7 Summsiry of Impulse Responses: Germany-U.S. 

EG MG MUS GG GUS 

EG / Z' 
MG / -

MUS Z' \ 
GG Z' 

GUS \ \ 
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Figure 8.5 Responses to U.S. GNP: Germany-U.S. 

8.2.2 Japan-U.S. 

Figures 8.6 - 8.10 present the results for impulse response functions of the Japan-U.S. case, also 

taken from the pairtiaJ system model. In the long-run, the Japanese exchajige rate shock (Figure 8.6) 

will have a positive effect on the Japamese excheinge rate itself since the negative chzinge at QQ is off^t by 

the positive change initiated at Q2. The Japeinese exchange rate shock has contemporaneous effects on 

both the U.S. and the Japanese money supply. The U.S. money supply increases immediately while the 

Japanese money supply decreases at QQ. However, Japainese money supply also increases after QI and 

continues to increase thereafter. The Japanese exchange rate shock has a permanent positive effect on 

U.S. money supply since the overall effect is positive over the time. Japanese GNP responds negatively 

to the Japanese exchange rate shock. The appreciation of the Japanese Yen damipens Japeinese exports 

and decreases Japanese GNP. As the speed of the appreciation of the Yen slows down, Japanese GNP 

recovers and after QI, it increases. On the other hand, U.S. GNP responds positively to the Japjinese 

exchange rate shock. The effect on U.S. GNP is permanently positive and dies down after 2 years. 

The Japanese money supply increases contemporaneously responding to its own shock (Figure 8.7) 

as expected, however, at Qi, it decreases, and, then, after Q3, Japanese money supply does not change 

any longer. The Japeinese money supply shock has positive effects on both the U.S. money supply and 
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Figure 8.6 Responses to Japanese Exchange Rate: Japan-U.S. 

GNP. In both cases, the positive chamges are larger thaji the negative changes, so the Japcinese money 

supply shock has positive effects on both variables. However, the Japanese money supply shock does 

not have any contemporameous effects on the Japanese exchange rate or Japanese GNP. The exchange 

rate decreases at Qi. Then, at Q2, although it increases, the positive effect is smaller thaui the negative 

effect at Qi. The Japanese money supply shock will have a negative effect on the exchamge rate, as 

theory predicts. An increase in Japanese money supply leads to depreciation of the Japamese yen, so 

Japamese GNP increases at Qi and decreases at Qj- Yet the overall effect seems to be small due to 

the offset of the two effects and, in the end, zdl the effects of the Japanese money supply shock will die 

down within 2 years. 

The U.S. money supply shock (Figure 8.8) does not have contemporaneous effects on the Japanese 

money supply, GNP or exchange rate, but U.S. GNP positively responds to the U.S. money supply shock. 

It is also observed that the U.S. money shock has a permanent effect on U.S. GNP. The Japanese money 

supply starts to respond positively at Qi and decreases at Q2- The positive changes in the Japanese 

money supply seem to be larger than the negative changes, so that the long-run U.S. money supply 

effect is positive. At Qi, both the Japanese exchange rate and GNP increase, this positive change in 

exchcinge rate is as expected: an increase in U.S. money supply induces the Japanese yen to appreciate, 

mainly due to the fact that the U.S. money supply increases faster than the Japanese money supply. 
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Figure 8.7 Responses to Japanese Money Supply: Japan-U.S. 

The change in Japanese GNP is not so large as the changes in the other variables. Although the speeds 

of the cheinges in Japainese exchange rate and GNP decrease at Qi, the two variables continue to increase 

and the effects on both variables sure permanently positive. The effects on all 5 variables will diminish 

after Qg. 

The Japanese GNP shock (Figure 8.9) immediately siffects variables other than the Japaaiese ex­

change rate. The exchange rate receives a positive shock at Qi. At Qo, the change in the Japanese 

exchange rate starts slowing down, then it appreciates for the three quarters and its effect dies out 

quickly. Here, both Japanese and U.S. money supply move in the scime direction, but the change in the 

Japanese money supply is larger than the ch2inge in the U.S. money supply. 

Now, the Japanese monetary authority will try to reduce money supply to slow down the economy 

and induce the Japanese yen to depreciate after Qo- At Qo, the Japanese GNP shock has a positive 

effect on U.S. GNP and its effect is permanently positive. In fact, the effect on U.S. GNP will last 

longer than the effect on Japanese GNP. 

The U.S. GNP shock (Figure 8.10) will not contemporaneously affect any other vziriables than itself. 

It has an effect on Japanese exchange rate at Qi, which is permeinently positive and continues for 

approximately 2 yeajs. When the U.S. economy expzinds, it will help the Japanese economy to expand 

by increasing Japanese e.xports to the U.S.. thus Japanese GNP also responds positively to the U.S. 
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Figure 8.8 Responses to U.S. .Money Supply: Japan-L'.S. 

GNP shock. The effect on the U.S. money supply is very small but positive. As far as the Japanese 

money supply is concerned, it also increases at Qi. but at Qo, it decreases slightly. The effects on 

Japanese exchange rate and Japanese GNP seem to continue slightly longer than the effects on the 

other variables. 

Table 8.8 summarizes the above results for impulse responses. Table will be read in the same fashion 

as Table 8.7. 

Table 8.8 Summary of Impulse Responses; Japan-U-S. 

EJ MJ MUS GJ GUS 
EJ - -

MJ \ / 
MUS / Z' 
GJ \ - Z' Z' 

GUS \ \ - /• 

j 
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8.2.3 Germany-Japan-U.S. 

Figure 8.11 - 8.18 aie impulse response functions for the Germany-Japan-U.S. case. In this case, 

there au:e 8 variables in the system, therefore 8 different impulse response functions. In this three-coimtry 

case, interest naturally lies in the third country effects. 

The German exchange rate shock (Figure 8.11) will have contemporeineous effects on all the variables 

in the system, although the effects on Japanese and U.S. GNP zire minor. The German exchange rate 

shock will induce both the German Mark and the Japanese Yen to appreciate against the U.S. dollar. 

It is interesting to note that the Japanese exchange rate responds to the Germem exchange rate shock 

as much as the Germain exchzinge rate does. While the speed of appreciation of both exchange rates 

slows down after Qi, the German exchange rate shock will have permanent effects on both currencies. 

All three money supplies respond positively to the Germem exchange rate shock, here, the effect on 

the Japanese money supply is the smaJlest amaong all the three. However consistently positive the 

resurtions of the three money supplies, the effects on GNPs are various. The effects on German GNP 

are consistently positive and permanent and will die down after one year. The effects on Japanese aind 

U.S. GNP cire initially negative and smeill, however, at Qi, both effects turn positive ajid continue to 

be positive until the effects die down. 
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Responses To GNPJ 

Figure 8.9 Responses to Japauaese GNP: Japan-U.S. 
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Figure 8.10 Responses to U.S. GNP: Japan-U.S. 

The Japanese exchamge rate shock (Figure 8.12) has different effects on the variables from the 

German exchange rate shock because Japanese exchange rate is treated in a different way (as weakly 

exogenous variable) in the system. It has immediate effects on weakly exogenous variables such as 

Japanese exchange rate itself, Japanese money supply, U.S. money supply and Japanese GNP, but no 

contemporaneous effects exist on the other endogenous vzuiables. The Japanese exchange rate shock 

will have a positive and permanent effect on its own vciriable. However, it will have a negative effect on 

the Germam exchange rate, unlike the previous case, amd this effect is consistently negative, the German 

mark will depreciate due to the Japanese exchemge rate shock. In this model, the effect of the Japanese 

exchange rate shock on the Germeui exchamge rate is opposite of the effect of the German exchange rate 

shock on the Japanese exchange rate. The effect on the Japanese money supply is initially negative, 

but fluctuates sifter Qz- The overdl effect seems to be negative, although this negative effect is partially 

off^t by the positive effect. 

The effect on U.S. money supply initiaJIy moves in a positive direction and turns positive at Qi, 

when the effect on German money supply is negative. The effect on Germcin money supply continues 

longer than the effects on the two other money supplies. The Japzmese exchange rate shock has a 

negative effect on Japzinese GNP, caused by the appreciation of Japsinese Yen which decreases Japainese 

exports to the other countries. On the other hand, its effect on U.S. GNP is consistently positive, while 
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German GNP will fall over time, but the magnitude of this effect is not as Icirge as those of the other 

effects. 

The German money supply shock (Figure 8.13) immediately induces the Japanese exchange rate 

to appreciate. The German exchange rate zilso appreciates cifter Q2, which contradicts the predictions 

from the theoretical model. Interestingly, the effect on the German exchange rate is smaller than the 

effect on the Japanese exchange rate and it zilso dies down more quickly. Both U.S. auid Japanese money 

supply increase at Qo and immediately decrease at Qi, then, the effects on both money supplies quickly 

die down after Q3. Since the effects fluctuate over time, they are temporary effects. On the other hand, 

the effect on the German money supply itself is consistently positive and permanent. The effects on all 

GNPs are contemporaneously positive and continue for one year, and, hence, the effects on all GNPs 

are permanently positive. 

The Japanese money supply shock (Figure 8.14) does not have contemporaneous effects on either the 

Japanese exchange rate or the German exchange rate. In feict, German exchange rate hardly responds 

to the Japeinese money supply shock. The Japainese exchange rate will slightly appreciate, but the effect 

quickly dies down. Both the Japanese cind the U.S. money supply immediately increase and fluctuate, 

though the effect on U.S. money supply seems temporary. The overall effect on Japsmese money supply 

is positive, while some of this positive effect is offeet as time passes. The German money supply does not 

immediately respond to the Japanese money supply shock, but it starts increasing at Qi and fluctuates 

thereafter, moving in the opposite direction of the U.S. and the Japeinese money supplies over time, so 

the effect on the German money supply is temporary. Japanese GNP increases at Qo, but the effect is 

not large and the initisd positive effect will be offset by some negative effects later. Both the U.S. and 

German GNPs move in the same direction, the effect on German GNP being larger than the effect on 

U.S. GNP, but the effects on both GNPs are temporeiry. 

The U.S. money supply shock (Figure 8.15) has contemporaneous effects only on the U.S. money 

supply itself and the Japanese money supply. The two exchange rates do not respond to the U.S. 

money supply shock at Qo, but the German exchange rate appreciates and the Japanese exchange rate 

depreciates at Qi- It seems that the German exchange rate is more responsive to the U.S. money supply 

shock than the Japanese exchange rate, though the effects fluctuate over time and are considered to 

be temporary. Both the German and the Japanese money supply increase at Qi. Although the effect 

on German money supply dies down eifter Q2, the effect on Japanese money supply will continue for 6 

quarters. The U.S. money supply shock has a positive effect on U.S. GNP eind the effect is permanently 

positive. On the other hand, the shock negatively affects both Germein and Japanese GNP initially, but 
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as time progresses, both GNPs also increase due to the expansion of U.S. economy. Both the negative 

and positive effects on the two GNPs are approximately the same, so they tend to ofi^t each other and 

the overzill effect may not be large. 

While German exchange rate does not immediately respond to the Germzin GNP shock (Figure 8.16), 

Japanese exchange rate contemporaneously responds in a positive way. Due to the fluctuation, the 

overaJl effect on the Japanese exchzmge rate is small, but permanently positive. All three money 

supplies increase due to the Germzm GNP shock, but once agciin, the German money supply does 

not immediately respond. Even though the effects on the U.S. and the Japanese money supplies are 

sometimes negative, overall, they are positive. The German GNP shock will increase money supplies 

in the three countries eind it also has positive effects on all three GNPs. 

The Japanese GNP shock (Figure 8.17) does not have contemporaneous effects on einy variables 

other than Japanese GNP, but the Japanese and the German exchange rates appreciate at Qi, and 

both exchcinge rates fluctuate thereafter. The positive effects on both exchzinge rates are Icirger tham 

the negative effects, so the overall effect on the exchange rates will be positive and the two exchange rates 

appreciate due to the Japanese GNP shock. The three money supplies respond in the same direction, 

decreasing at Qi and fluctuating over time. The Japanese GNP shock seems to have a negative effect 

on Japanese money supply, while it it has only temporary effects on German and U.S. money supply. 

It is also noted that the Japanese GNP shock induces the three GNPs, including Japanese GNP, to 

increase over time, therefore; in this system, the Japanese GNP shock will positively contribute to the 

GNPs in all three countries. 

Finally, the U.S. GNP shock (Figure 8.18) induces German exchange rate to depreciate and Japanese 

exchange rate to appreciate, both effects being permanent. This appreciation is not what the model 

predicts. It also increases both the Japanese and the U.S. money supply and decreases the Germain 

money supply. The U.S. GNP shock will induce German and Japanese GNPs to increase as well as 

sparking an increase in the U.S. GNP itself, so in the end it has a positive effect on all three GNPs. 

The summary of the above results is presented in Table 8.9. 
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Figure 8.11 Responses to German Exchange Rate: Germzuiy-Japan-U.S. 

Table 8.9 Summary of Impulse Responses: Germamy-Japan-U.S. 

EG EJ MG MJ MUS GG GJ GUS 

EG Z' /' /• 
EJ \ \ \ \ \ /• 

MG / -

MJ - - - - -

MUS / \ -

GG / Z' / Z' 
GJ /• - \ -

GUS \ \ -
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9 CONCLUSION 

In this part, a multivariate statistical model, the peirtial system model, was applied to a data set 

consisting of exchange rates, money supplies 2ind GNPs. This work was initiaJly inspired by the work 

done by Dibooglu (1993). This part extended his work by applying Johzinsen's partial system model, 

instead of the full system model Dibooglu applied to his data set, which treats some variables in the 

system as weeikly exogenous and the others as endogenous. This mcide it possible to deal with more 

variables than the fiiU system model, since the number of parcimeters to be estimated is fewer theui in 

the full system model. When the third country's variables were added to the system, there were a total 

of 8 variables in the model; 2 exchange rates, 3 money supplies and 3 GNPs. 

First, the existence of unit roots in the time series data was investigated by using the Dickey-Fuller 

augmented unit root test. This series of tests showed that all the variables in the data set are integrated 

of order one, i.e., all the variables contain a unit root. 

Secondly, the full system model was investigated using the error correction model, amd then, the 

weakly exogenous aind endogenous variables in this full system model were determined. In the Germsiny-

U.S. case, 4 weakly exogenous variables in the system were found, while 2 weakly exogenous variables 

were identified in the Japan-U.S. case. Finally, in the Germany-Japan-U.S. model, 4 weakly exogenous 

variables were found. As discussed in the text, weak exogeneity is not the same as causality. After 

identifying weakly exogenous variables, the system was reformulated into the peirtial system model, eind 

then, the number of cointegrating relations eimong the variables under the partiad system examined. 

These cointegrating relations were tested by applying the rsink and maximum test. As it has often 

been pointed out, the analysis of cointegrating relations is very sensitive because the distributions of 

statistics are not ordinary distributions, they depend on nuisance parameters, and the critical values are 

derived &om simulations. It could be argued that the results derived from the model are not robust and 

some researchers are even sceptical about the procedures. However, reseairch on cointegration analysis 

under the partial system model has just started. This is one area which promises to be fertile ground 

for research in the future. 



www.manaraa.com

110 

Conintegrating relations are interpreted as long-run equilibrium. The theoretical model is based on 

Dombusch's sticky-price model and assumed that all countries in the model are large countries which 

endogenizes all prices in the system. The results do not completely match the theoretical long-run 

relations, most notably, the relations between exchange rates cind some of the money supplies are not 

what theories predict. However, the relations between exchange rates and GNPs are as expected. In 

pzirticular, the third country's variables were tested to see if they have some effect on exchange rate cind 

other variables, since hypothesis testing shows that the effects of the third country's variables on other 

countries' variables can not be ignored. On occasion, the results for these effects eire not consistent with 

what the theory predicts, and, sometimes, the signs of the coefficients do not agree with the theoretical 

signs. 

To investigate short-run dynzimics and long-run effects of the system, impulse response analysis is 

more appropriate. The coefficients in the long-run equilibrium equation should not be interpreted as the 

elasticity, which indicates the change in one variable caused by a unit of change in the other variable, 

and impulse response analysis 2K:counts for changes in all other vziriables in the system. Chapter 6 

presented the results for variamce decomposition 2ind impulse response analysis. The results for impulse 

response analysis eire simunarized in Tables 8.7-8.9. Because some of the coefficients for money supplies 

in the long-nin equilibrium equations were opposite to the predicted signs, there were similar problems 

with the relations between exchange rates and some money supplies, i.e., some of the relations between 

exchange rates and money supplies were not the predicted relations. While evidence indicates that 

the third country's veiriables have some explanatory power concerning changes in the variables of the 

other two countries, in most of the cases, it is difficult to interpret the results when the third country's 

variables are included. 

There are some critiques of impulse response analysis. As discussed in Chapter 6, restrictions 

were imposed on the system by specifying the ordering of the variables when variance decomposition 

and impulse response analysis was performed. The ordering that was adopted is one of many possible 

orderings. In other words, there are other orderings of the vziriables amd different results corresponding to 

these orderings. This makes some researchers sceptical of the above analysis. In fact, when the orderings 

were changed, different results (not shown in this part) were obtained. There are other problems that 

render the interpretation of impulse response analysis difficult. If the model has important variables 

missing, it may lead to major distortions in the analysis and make the analysis worthless for structural 

interpretations, although the model may still be useful for predictions. Additional problems result from 

measurement errors and the use of seasonally adjusted or temporally or contemporaneously aggregated 
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variables. 

Variance decomposition an2ilysis is subject to the same criticism as impulse response analysis. First, 

varieince decomposition is not unique since it depends on the choice of transformation. If other possible 

orderings of the variables were chosen, i.e., einother choice of transformation, it would be possible to 

obtain different results. Although Choleski decomposition was applied in this part, there are other 

types of decomposition, for instance, Blanchard-Quath decomposition, that might have been considered. 

Hossain applied and compared two types of decomposition in his paper. The variance decomposition is 

conditional on the system under consideration, so the results may change if the system is chzuiged by 

adding or deleting some of the Vciriables from the system. However, here, the results are not so sensitive 

to the choice of models, i.e., full system model versus pzirtial system model. Measurement errors, 

seasoned adjustment and the aggregate variables may ciffect the results for variance decomposition. 

The theoretical model is based on Dombusch's sticky price model with modified assimiptions, in­

cluding an imconditioneJ interest parity assumption which enables interest rates to be removed from 

the system. This assumption makes the model simpler since the variables are now only prices, money 

supplies, GNPs and exchange rates, however; this makes comparison of results with others which in­

clude interest rates in the system more difficult. There cire also some empirical results which refute 

Dombusch's sticky price model. In further reseairch, some of the other theoretical models that were 

reviewed earlier, such as monetary model, portfolio model and currency substitution model, might be 

extended to a three-country model. As the world economy becomes more interdependent, a particular 

country's policy will have greater effect on variables in other countries. It will be increasingly important 

to expand the model while, at the same time, keeping it as simple as possible. 
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PART II 

APPLICATION OF REGIME-SWITCHING STOCHASTIC 

VOLATILITY MODEL TO EXCHANGE RATES 
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10 INTRODUCTION 

In finamcicJ economics, and some axeas of econometrics, the volatility of financieJ assets, including 

foreign exchzinge rates, draws researchers' attention. Many researchers have established empirical reg-

uleirities of financial asset volatility. These regularities are well summarized in Bollerslev, Engle and 

Nelson (1994). For instance, Bollerslev et al. refer to (1) thick tails, (2) volatility clustering, (3) leverage 

effect, (4) volatility and serial correlation and (5) co-movement in volatilities. Thick tails refers to the 

fact that researchers often find the distribution of asset returns tends to have fat tails. The leverage 

effect refers to the tendency for changes in stock prices to be negatively correlated with volatility. Of 

course, foreign exchange rates do not necessarily satisfy all of the above regularities, often exhibiting 

time-varying volatility. This part will pursue the issues of changing volatility over time and volatility 

clustering. Volatility clustering is described by Mandelbrot (1963) as: 

large changes tend to be followed by large changes, of either sign, and small changes tend to 

be followed by small changes. 

For examiple, as Figure 13.1 shows, one of the characteristics of the foreign currency excheinge rates 

is its time-varying volatility, that is, the phenomenon that a tranquil period is followed by a volatile 

period.^ 

Volatility in exchange rates is not constjuit but varies over time. For the last 10 years, many ef­

forts have been made to model the volatility of financial assets including foreign exchange rates. In 

econometrics, the ARCH (Autoregressive Conditional Heteroscedasticity) and the GARCH (GeneraJ-

ized Autoregressive Conditional Heteroscedasticity) model and their variations have been extensively 

considered. More recently, the stochastic volatility model and its variations have been considered. 

This part will attempt to model time-varying volatility by adopting a switching-regime stochastic 

volatility model which is a variation of the stochastic volatility model. In Chapter 11, the two basic 

classes of models will be summarized: ARCH-type model including GARCH model and stochastic 

volatility model. Chapter 12 will introduce the switching-regime stochastic volatility model which will 

' This phenomenon could be observed more often and more clearly in other financial markets such as stock markets. 
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be applied to the data. Chapter 13 will present empirical results and conclusions will be discussed in 

Chapter 14. 
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11 TIME-VARYING VARIANCE MODELS 

This chapter will summarize three models to describe time-varying vMiance: ARCH, GARCH and 

stochastic volatility. For each of these, basic modeling amd estimation methods will be illustrated. 

Since Engle (1982) introduced em ARCH (Autoregressive Conditional Heteroscedasticity) model to 

model changing variance of the time series over time, the ARCH and GARCH (Generalized Autoregres­

sive Conditional Heteroscedasticity) models have been among the most popular models in econometrics 

amd financial economics to capture time-varying conditional varisince. 

In this section, a basic ARCH model followed by GARCH and a stochastic volatility model, are 

outlined, in particular, to illustrate diiferences between the stochastic volatility model auid the ARCH 

eind GARCH model. Extensive discussions on ARCH and GARCH models can be found in Bollerslev 

et al. (1992), Bollerslev et ad. (1994) and Enders (1994). The key idea to capturing the time-varying 

volatility and volatility clustering is the distinction between the unconditional variance and the con-

ditionad variance. The idea is that the conditional vauiaince depends on the information of the past 

periods and varies over time while the unconditionad variance is time-invairiant. 

Consider the foUowing simple model that sketches the essence of the ARCH model. Suppose that 

the {yt} process follows an AR(p) process: 

11.1 ARCH Model 

yt — Q + + <p2yt-2 + —i- <ppyt-p + (11.1) 

where {ct} is a white noise: 

E[£t] = 0 for aJl f (11.2) 

0 otherwise 

for t = T, 
(11.3) 
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The {yt} process is covariance-stationary, if all the roots of 

1 — (j>iZ — <j>2Z^ — <ppZ^ = 0 (11-4) 

are assumed to lie outside the unit circle. The mean of the process {yt} is: 

E[yt] = a/(l-<!>i-?i2 <^p) (11-5) 

Suppose that the square of {et} itself also follows AR(?): 

£?=/? + + ^2£t-2 + 1" ^q^t-q + '7t (11-6) 

where {rjt} is also a white noise process: 

E[»j,]=0 foralH (11.7) 

, tr? for f = r, 
EivtVr] = -{ ' (11.8) 

0 otherwise. 

When (11.6), (11.7) and (11.8) hold, the process {et} is said to follow an ARCH(g) process and this will 

be denoted as £t ~ ARCH{q). A further restriction is required for the ARCH process, the assiunption 

that eill the roots o f  [ I  —  d i z  —  6 2 2 ^  ^9^') = 0 are outside the unit circle. If this holds, then the 

unconditioned variance of {et} is calculated as: 

var[e£] = E[£=] = ^/(l 5,) (11.9) 

On the other hand, using the assumption that {st} is a white noise process, the conditional variance of 

{et} based on the observation of time t — 1 is expressed as: 

var[£t|/t_i] = E[£t = 0 + + ^2^-2 + ^q^-q (11.10) 

where It-\ is an information set of time f — 1 or the observations at time < — 1. It czin be seen from 

(11.9) that the ARCH model is still consistent with the assumption that the unconditionad variance is 

constant. 

The unconditional meain and variance of {yt} are the same as (11.5) and (11.9). The conditional 

mean and varizuice sire still the same as previously: 

= or + (piVt-i + <i>2yt-2 -i (• <t>pyt-p (11.11) 

var[y£(/t_i] — var[££|/t_i] — 3 + ^2^t-2 + • • • + (11.12) 
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It should be noted that the conditional variance is a function of the past realizations. 

Some authors use eiltemative representations; see, for instance, Boilerslev et al. (1992) and Harvey 

(1993). Following Harvey (1993), some of the other properties of the ARCH model are better illustrated, 

using the alternative representation. 

Suppose that the process {yt} is, insteeid, expressed as follows: 

yt = o-tUt (11.13) 

af=-f+ayf_^ (11-14) 

where 7 > 0, a > 0 amd {ut} is n.i.d.(0,l). Two conditions are needed,7 > 0 and a > 0, so that erf 

is always nonnegative. Note that the model is conditionally Gaussian and ~ iV(0,<rf). Firstly, 

the ARCH model is a Martingede Difference (MD) and its unconditional mean is zero zind it is serially 

uncorrelated.^ If 0 < a < 1, the unconditional variemce of {yt} can be written as: 

var[j/t] = E[yf^] = 7/(1 - a) (11.15) 

Therefore, the ARCH process is a white noise though it is not a strict white noise. Although it is 

conditioneilly Gaussian, the process is not unconditionsdly Gaussian. It is also noted that the kurtosis, 

3(1 — a-)/(l — 3a-), is greater than 3 if 3a^ < 1 . This implies that the data distribution has heavier 

tails than the normaJ distribution whose kurtosis is 3. Hence, the ARCH model cam take into account 

another regularity that many of the financial data show, leptkurtosis. In other words, the ARCH model 

can explain the data which sire generated by a fat-tailed distribution. Using (11.1) and (11.2), it can 

be shown that the squared observations, {j^}, actually follow an AR(1) process. The ACF of {yf} is 

written as: 

= <^'' r = 0,1,2,--- (11.16) 

The MSE of the prediction under the alternative model is: 

MSE(yj'+i|T) = 7(1 + a + or^ + Q® H 1- a'"^) + a'yy (11-17) 

Note that as / —>• 00, the expression of (11.17) will tend to that of (11.15) since 0 < a < 1. When the 

vadue of / is finite and small, the two expressions ane different. 

'The {yt} process is called an MD when {yt} satisfies: 
= 0. 
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11.2 Generalized ARCH Model 

A naturzJ extension of the ARCH model is the Generalized ARCH model or GARCH(p, q), which 

was first introduced by Boilerslev (1986). The model assumes that the conditional variance follows an 

ARMA(p, q) process instead of zin AR process. The conditional variance {At}, will be written as follows: 

ht = 0 + Ol£t-l +^2^1-2 + H (11.18) 

or 

ht = + <^{L)-^e{L)e^ (11.19) 

where 0(£) = l-{-9iL + d2L^ \-OpLP eind $(L) = l — — <i>qL'>. L is & lag operator. 

All the roots of $(z) = 0 are assumed to lie outside the unit circle. Restrictions must be imposed on 

the parameters so that the conditional variance is nonnegative. In a simple GARCH(1,1) model, the 

restriction is equivedent to both 6i and being normegative. To determine the orders of p and q, 

the usual ACF/PACF techniques will be applied to the residuals. Hamilton (1994) shows that if {et} 

follows a GARCH(p,?) process, then {Sj} is described by an ARMA(m,p), where m = mcuc(p, 9). By 

observing ACF cind PACF of {e?}, the range of the possible orders of p and q can be narrowed down. 

Boilerslev et ad. (1992) point out that p = 9 = I is suflScient in most of the empirical cases. 

11.3 Estimation Methods 

There are three principal methods to estimate the ARCH and GARCH model; the maximum likeli­

hood method, the quasi-maximum likelihood method and the method of moments. See Hamilton (1994), 

Boilerslev et al. (1992) and Boilerslev (1994) for the detailed discussions on these three methods. Here, 

only basic ideas are illustrated. 

11.3.1 Mecdmum Likelihood Method 

To explain the maximum likelihood method, consider the following model: 

yt = it/3 + ut (11.20) 

where it is a vector of explanatory variables and 0 is a. vector of coefficients. Suppose the error term 

{u{} follows an ARCH process: 

ut = (11.21) 
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E[i/t] = 0, E[ff] = 1 for all f (11.22) 

The conditionzJ varictnce, E[U{ |ut-i, ue-2, • • •] = At, is assumed to evolve as follows: 

ht=C + Oil"?-! + Q:2W?_2 -I + (11.23) 

This indicates that ut follows an ARCH(m) process. By conditioning on the first m observations, T 

numbers of observations are used to estimate pareuneters. There will be, at time t, the following vector 

of the observations: 

— (2/t t yt—h ' '' 1 yOr ''' J y—m+l 1 1» * * * » ^O, • * • » m+l) (H-2^) 

If it is assumed that Ut has a Gaussian distribution N{0,1) and is independent of both Xt and zt-i-

Then, a joint distribution of yt can be written as: 

where 

At = C + ai{yt-i - + 1- am{yt-m - (11.26) 

Hence, the log likelihood function conditioned on the first m observations will be: 

T 

t=:l 

T T 

= log(2;r) - i ̂  log(AO - \ ̂ {yt - (11.27) 
e=i t=i 

To maximize the log likelihood function in (11.27), severed techniques eu:e avedlable such as the method of 

scoring (Engle (1982)), or the BHHM algorithm (Bemdt, Hall, Hail, and Hausman (1974) and Bollerslev 

(1986)). 

Some researchers have attempted to extend the above model to incorporate the empirical regularity 

that many financial data come from the fat-tailed distribution. For instance, Bollerslev (1987) considers 

a non-Gaussian distribution case. He assumes that ut has a t-distribution with k degrees of freedom 

and a scale parauneter, Mt, which is also a parameter to be estimated by maximum likelihood method. 

In this case, the density function is written as: 

( f f / c ) i / 2 r ( « / 2 ) ^  M,K^ 

where r[-] is the gamma function. The t-distribution is symmetric eiround zero and its kurtosis is 

3(/c — 2)/(k — 4) which is greater than 3 if /c> 4. The conditional variaJice, then, is: 

E["r] = (11.29) 
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If M t  =  h t { K  —  2 ) / k ,  then the density becomes: 

f(u,) = .nildLllZElfK — + "t 1-('/c+I)/2 /II QQ\ 

Using (11.30) instead of (11.28), the following log likelihood function conditional on the first m obser­

vations is obtzdned: 

T 

t=i 

- rlocr n(«+ _ 9^-1/2 _ i ̂  \na(h \ 
- ,rl/2r(K/2) ^ ^ 2^ 

T 
" E[1 + iVt - <0)-/ht{K - 2)] (11.31) 

2 .=x 

where 

ht = C + ai(yt-i-a:Li/?)^ + --- + Q:m(yt-m-i't_m/?)^ 

= [wM'S (11-32) 

where 

[u;t (/?)]'=[ 1 (yt-i - ••• ivt-m - x't.rnP)^ \ (11.33) 

ai ... (11-34) 

Again, by using the available methods, the maximum likelihood estimates can be found numerically. For 

other distributions than ^-distribution, Jorion (1988) proposes a normal-Poisson mixture distribution. 

Baillie and Bollerslev (1989) considers power exponential distribution eind Hsieh (1989) uses normal-log 

normal mixture. 

11.3.2 Quasi-Maximum Likelihood Method 

Weiss (1984, 1986), Bollerslev and Woodridge (1992), and Glosten, Jagarmathaui and Runkle (1989) 

pointed out that the maximum likelihood method discussed in the above will provide consistent esti­

mates even when Ut has a non-Gaussian distribution, if it is assumed: 

E[i/tlit,zr_i] = 0 (11.35) 

eind 

E[i/f|rt.-t-i] = 1 (11.36) 
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They showed that, under certain regularity conditions, the following will hold; 

y/T{eT -e)-^ N[Q, D-^SD-^) 

where 6T is the estimate and 6 is the true value. S and D in (11.37) are: 

T 
S=plimr-^5;[5afl)]-[5t(5)] 

T-*OO c=l 

where st[6) is a score vector calculated by^: 

5t(0) = d\ozf{yt\xt,zt-i\S) 
d 9  

and 

S and D are consistently estimated by: 

T 

:=l 

Z^j=i 

wt0) 

^ [ E7=1 Wtipy ] + Y } 
Xtz\ 0 

0 0 

Note that if the data were generated from Gaussian distribution, then S = D holds. 

(11.37) 

(11.38) 

(11.39) 

(11.40) 

(11.41) 

(11.42) 

11.3.3 Generalized Method of Moments 

The third method to estimate the parameters is generalized method of moments. To apply this 

method, two conditions must be satisfied. The first one, from (11.20), is that the residual in the 

regression is orthogonal with the explcinatory variables, Xti 

E[titrt] = 0 (11.43) 

The second condition is the implicit error in forecasting that the squared residual is orthogonal with 

lagged squared residuals: 

E[("f - /tt)";!] = 0 (11.44) 

^Derivations are in Hsunilton (1994). 
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To minimize, 6 = {P'.S,)' is chosen: 

g{e : ZtYs'Tgid : zt) (11.45) 

where 

9{6 : zt) = 
rlZLiiyt - x't0t)xt 

(11.46) 

.After deriving the first order conditions from (11.45), estimates of the parameters can be found numer­

ically. Further discussion on generzJized method of moments can be found in Hamilton (1994). 

11.4 Stochastic Volatility Model 

The stochastic volatility model is another way to capture the time-varying volatility of the time 

series data. Although the model imposes less restrictions and fits in a theoretical framework more 

naturally than the ARCH and GARCH model, it is very difficult to obtain the exact likelihood fimction 

for the stochastic model and to estimate by maximum likelihood method, since the likelihood function is 

an Af'-dimensioned integred, where N is the number of observations. Thus, its empirical application has 

been limited. While the ARCH and GARCH model assume that the conditional variance is a function 

of the past varicince cuid the squares of the past observations, this approach assumes that variance is 

an unobservable variable that follows some stochastic process, for exzimple, an AR process. Another 

advantage of the stochastic volatility model is that the extension to multivariate models is more natural; 

see Harvey et al. (1994). Following Harvey (1993) and Harvey et al. (1994), this section discusses a 

simple univariate stochastic volatility model. 

Consider the following simple univariate model: 

yt=exp|y|£t t = (11-47) 

where et^NID{Q, 1) and at is assumed to follow a stochastic process, say, an AR(1) process; 

Oct = f + <f>cct-i + Tft (11.48) 

where r]t'^NID{0,a^). It is also assimied that the processes {^t} and {r;t} are independent of each 

other for all f. If |(^| < 1, then the process {at} is stationary with mean and variance: 

= (11.49) 

O 
Var[ac] = <^1 = ,, (11.50) 

( 1  -  0 - )  
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Harvey et al. (1994) point out that the restrictions necessary to ensure the stationsirity of the process 

{yt} cire the ones to ensure the stationarity of the process {of} because the process {yt} is a product 

of two stationairy processes. Since the processes and {/jr} are independent of each other for all t 

amd T, the process {j/t} is a white noise process. Its mean and autocovziriamce are: 

E[ye] = E [®*P {y}] EN = 0 Vt (11.51) 

and 

E[ytyr] = E [et exp |y} Sr exp |y}] 

= E[et£r]E jexp 

exp{(7. + K)} ^ = 

0 otherwise 

The odd moments of the process {yt} are all zero because of the symmetry of {st}- The even moments 

are derived by using the properties of log-normal distribution, exp {art}-" 

E[exp{jat}] = exp |j7a + |roi| (11.53) 

Most importauitly, the fourth moment exists amd it is: 

E[yt ] = E[e^]E[exp {2at}] 

= 3exp {27a+ 2o-a} (11.54) 

The Kurtcsis is, then, calculated: 

^ _ E[y^] 
' ~ {E[j^]}2 

_ 3exp {27a + 2<r^} 

[exp {7a + 50-2 }]2 

= 3exp{£r^} (11.55) 

So, if is positive then the kurtosis is greater than 3, which describes a fat-tailed distribution. It is 

sometimes useful to use a transformed process, {logy^}, rather than the process {yt} to capture the 

properties of the dyneimics. From (11.47): 

log(yf) = Qt+log(£?) (11.56) 
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Since {£(} has a standard nonnal distribution, log(e^) has the mean -1.27 and the variance n-^/2 = 4.93. 

Then, (11.56) can be written as: 

log(yt) = Q:e + Iog(ef)-1.27+1.27 

= -1.27 + at+e; (11.57) 

where ej = Iog(ef) + 1.27. Hence, Iog(j/f) is the sum of an AR(1) process amd a white noise. That is, 

Iog(j/f) is an ARMA(1,1) process with autocorrelation function: 

^ 1 +4.93/0-2 • 

The model can be genereilized by assuming that the process {art} follows any stationary ARMA(p, q) 

process. Then, the process {yt} still follows a stationary process. 

Another direction of the generalization is to assume a non-normal distribution for {et} as the ARCH 

model is generalized by using t-distribution. 

Suppose that the process {et} has a t-distribution. The f-distribution is: 

t=-^ (11.59) 
y/V 

where 2~Ar(0,1) suid i/i;~x^(i')- z and v Eire independent. Hence, {ft} can be written as: 

£t = S= 
yJKt 

where Q~N{0,1) ajid degrees of freedom. Then, from (11.60): 

log£^ = logCt^ - log/cc (11.61) 

where log Kf is a log of and its expectation and varieuice are, respectively: 

E[log«t] = ^(|)-logg) (11.62) 

Var[log»St] = ^'(|) (11.63) 

where ^'(•) is the digammaamd ®'( ) is the trigJimma function. Substituting these results into (11.57) 

gives: 

log(y?) = -1.27 + at -t- ej - E[log/ct] + Epogxt] 

= _1.27-{^(0-log(|)} + a,4-£r (11-64) 
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where e" = ei + ^'(logKt). The expectation and vairiance of the process {£"} are: 

E[£--] = 0 (11.65) 

Var[er] = 4.93 + (|) (11.66) 

Again, log(yf) is a sum of the AR(1) process and the white noise. The ACF has the following form: 

{l + [^'(|) + 4.93]/<r|} (11.60 

11.5 Estimation Methods 

There are mainly three methods of estimating a stochastic volatility model: method of moments, 

quasi-maximum likelihood method, and Bayesian approach. Since the Bayesian approach is applied to 

the model in the next chapter, it will be discussed there. 

11.5.1 Method of Moments 

There is some work on parameter estimation based on the method of moments; see Wiggins (1987), 

and Melino and TumbuU (1990). Melino and TumbuU point out that the work done by the other three 

has foimd the sensitivity of the parameters to the moments they fitted but that they could not test 

whether the different parameters they obtained are due to sampling error. This section illustrates the 

generalized method of moments procedure used by Melino and TumbuU. In their paper, Melino and 

TumbuU estimated a U.S.-C£inada daUy exchatnge rate with about 3,000 observations using a stochastic 

volatility model. Their data zure unevenly spaced. The estimated equations zire: 

S{ U )  = ahi + (1 + bhi)S{ti.i) + (11.68) 

and 

lnt;(f,) = a/i + (1 + Sh)lnv{ti — A) + th^l^u{U) (11.69) 

where 5(t,) is a spot exchange rate at timet,-, v{ti) a level of a volatiUty, hi = f,—f,_i, and h = 

Two error terms are assumed: 

• -AT 10. 
u{ti) 

1 p 

p 1 
(11.70) 



www.manaraa.com

126 

They demonstrate that if ^ < 0 and the appropriate initial conditions are met, the even spacing discrete 

time approximation will lead to the stationary volatility and that: 

\nvt~N{ny,<Tl) (11-71) 

where = —f and Melino zmd TumbuU define 8 = {a,b,a,S,-y,p;0) and Wi{0) by; 

/m _ S[ti) — ahi — (1 +6/i,)5(ft_i) /,, 

where W i ( 8 )  represents the normalized one-observation-ahead forecast errors. In general the expectation 

of functions of Wi will be functions of B. The method of moments estimates the parameters d by 

equating the computed sample moments of these functions to their population moments. They consider 

the following functions in reference to the three criteria; familiarity, identification, and efficiency. See 

Melino and Turnbull for a deteiiled discussion: 

m = 1,2,3, ••• (11.73) 

|u;r(0)| m=l,2,3,--- (11.74) 

wi{e)wi.j{,e) ; = 1,2,3,--- (11.75) 

Me)u;,-_j(d)| j = l,2,3,--- (11.76) 

w]{e)wj_^[e) i = 1,2,3, (11.77) 

|u;.(ff)K_j(0) i = 0,±l,±2,±3,--- (11.78) 

Melino amd Turnbull provide the unconditional expectation of these fimctions in the appendix. Then, 

they follow Hansen's (1982) genersJ framework. denotes a vector whose components £ire 

fimction of u;,-, and gn{0) is defined to be: 

5n(e)=^2/i(0) (11.79) 
«=1 

Then, an optimal B will be chosen as: 

dn = argmin g'n[.B)Wngn(B) (11.80) 
860 
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where 0 is the permissible parameter space and Wn is a positive definite weighting matrix. Under 

certain regulcirity conditions, is consistent and asymptotically normal: 

^Ar(0,V;.) (11.81) 

where Vn can be consistently estimated by: 

Vr, = (iy„W„D„r^D'„W„tnW„D„(iy„WnDr,)-' (11.82) 

where D^(0) = dgn{0)/dd, that is, the Jacobian matrix. Melino and Tumbull estimated E„ by using 

the Newey-West method and set Wn = for the simplicity. The results are presented in section 4.2 

in their paper. 

11.5.2 Quasi-Maximum Likelihood Method 

This method has been discussed in many papers; see Hzirvey, Ruiz, and Shepaird (1994), Ruiz (1994), 

Kim and Shepard (1994), Jacquier, Poison, and Rossi (1994) and Breidt and Carriquiry (1996). In this 

section, a frcimework of the method based on the above papers is presented. As Ruiz (1994) eind Jacquier 

et al. (1994) point out, the method of moments estimates are ineflScient and show poor performances 

over repeated samplings relative to likelihood-based estimates. Jacquier et al. show that this problem 

is particularly serious in a stochastic volatility case because it is difficult to choose moments to be 

computed without the help of the score fimction. Heurvey et al., Ruiz, and Kim et al. transform the SV 

model to a linear model in a state-space model aind use the Kalman filter to estimate the unobservable 

volatility eind a quasi-maximum likelihood function to obtsun the parameters. In the simple model used 

in this part, (11.48) cam be considered to be the transition equation and (11.57) can be seen as the 

measurement equation. Hairvey and Shepard (1992) showed that r/t in (11.48) and ej in (11.57) are 

uncorrelated even if Tjt in (11.48) and £t in (11.47) are correlated. As seen in the above, ej = log -1-1.27 

does not have a Gaussian distribution. In other words, if the Kalman filter is applied, the estimates 

are the MMSLE (Minimum Mezm Squsure Linear Estimator), but not the MMSE (Minimum Mean 

Square Estimator). An exact likelihood function cannot be obtained &om the Ksdman filter because 

the model does not have a conditional Gaussian distribution. However, the model can be treated as if 

it had a Gaussian distribution and the quasi-maximum likelihood fimction can be maximized instead 

of the exact likelihood fimction. Ruiz (1992) points out that the assumption that St is a Gaussiem 

will not improve the efficiency even if it is true while Harvey states that if the distribution of £t is 

not specified, the level of volatility is not identified because E[log£t^] is unknown. If the distribution 

of ej is assumed to be a ^-distribution, then u can be obtained from (11.68). Then. EPog£t"] can be 
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computed by (11.61) and (11.62). Breidt cind Carriquiry propose another transformation that is called 

the robustified trsinsformation instead of a squeire-Iog trzmsformation that we considered in (11.56) Jind 

apply the quasi-maximima likelihood method. 
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12 REGBVIE-SWITCHING STOCHASTIC MODEL 

This section discusses the principal model; the regime-switching stochastic volatility (RSSV) model, 

two different version of the model. The first model is an extension of Schmidt's model (1996), different 

only in that four regimes are used here while there are two regimes in Schmidt's model. The second 

model is a mean model which considers em explicit relation between exchsmge rate and interest rate 

£md assumes that an error term will explain volatility in exchange rates. Finally, the structural model, 

derived from the interest parity condition, will be assumed throughout. 

Discussion for the first model in this section will follow Schmidt's discussion with some modifications. 

12.1 An Extension of Schmidt's Model 

The first model, a simple extension of Schmidt's model, will be expressed as follows: 

where the two errors, rjt and Q, are assumed to have normal distributions with mean zero and vEiriance 

one: 

As Schmidt points out, a mean of zero in rjt is logical since the mean in the j3,, term can be accounted 

for and o-„ can accoimt for the vairiance process, as mamy researchers have found^, the expected chamge 

of the exchange rate is assumed to be zero and the assumption that Q has a mean zero is also valid. 

While Schmidt discusses the case where ort follows an AR(1) process; at = + <ps,oct-i + oStVt, 

this part simply applies the case where at has a constaint term and an error term in order to keep the 

model simple. The state of the economy is represented by St. There aire four states of the economy in 

this model, so that St taikes four values; St = 1,2,3,4. The four economic states will be determined 

' Many researchers have found that short-run exchange rates such as daily exchange rates follow a random walk process. 
For instance see Meese and Rogoff (1983). 

= 0,, +a-stVt (12.1) 

Ct iid N(0,1) 

T)t i id N{0,1) 
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by the following two factors; (a) two observable economic states which is a change in the difference of 

the interest rates in the two countries, and (b) two unobservable economic states A and B. If capital 

mobility is assumed, the interest peirity condition holds and the difference of the two interest rates is 

the expected appreciation (depreciation) of domestic currency, then it is possible to exemiine how the 

higher expected appreciation or depreciation will affect a change in exchange rate. In other words, 

whether higher expected appreciation (depreciation) will induce exchange rate to be more volatile or 

less volatile. Defining xt as the difference between the foreign and U.S. interest rate, say, French interest 

rate — U.S. interest rate, then the four economic are defines as follows: 

state 1: |zt| > i and unobservable state A 

state 2: |xt |  > i  and unobservable state B 

state 3: |zt |  < k and unobservable state A 

state 4: |a:{| < and unobservable state B 

where k is some fixed nimiber. The economy is in state I if the interest rate differential is greater than 

or equal to some fixed value k and the economy is in unobservable state A. If the economy is in state 

1, the change in exchange rate on day t, then yt, will be modeled as: 

yt = exp{i(^i +o-i»7t)}Ct 

Similarly if the economy is in state 2 where the interest rate differential is greater than or equal to some 

fixed value k emd the economy is in unobservable state B, then yt will be modeled as: 

yt = exp{i(^ +o•2»7t)}Ct• 

To simplify the model assumes that a differs depending only on the unobservable states. In other words, 

it is assumed that cti — az and aj = <^4. In Table 12.1, yt in all four states is summarized. 

Table 12.1 States of the Economy and yt 

Unobservable State A Unobservable State B 

|zt| > k l.exp{|(/?i +<ri77t)}C{ 2.exp{i(;S2 + o-2»7t)}Ct 

H A
 

3.exp{i(^ + o-i77t)}C{ 4-exp{i(j54 + (7-2»?t)}Ct 

To describe the process of switching states from 1 or 3 to 2 or 4, or vice versa, a Markov chain model 

is applied. As in Schmidt, a fixed transition probability matrix is assumed in this Markov chain: 

P{st = 1 or 3|st_i = 2 or 4) = ei 

P(5t = 2 or 4|st_i = I or 3) = £2 (12.2) 

Equation (12.2) above indicates that the probability that the state of economy shifts from the state 2 

or 4 to the state 1 or 3 is £1 and the probability that the state of economy moves from the state 1 or 
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3 to the state 2 or 4 is £0- The probability that the state of economy remains the same in eeich case is 

1 — £1 and 1 — £21 respectively. The transition probability matrix is written as: 

Y (12.3) 
\ £2 1 ~ £2 / 

The first row cind colunm represent the states 1 and 3 cind the second row and column represent the 

states 2 and 4. If the regularity condition for the Meirkov chain is assumed, then: 

P TT = IT (12.4) 

where tt = (ttj n-j)' is a (2 x 1) vector, w is called the limiting probability distribution and can be solved 

in terms of Si eind £2'-

£2 Tl = 
£1 + £2 

TT, = (12.5) 
Cl + £2 

The Gibbs sampler technique will approximate the posterior distribution of all unknown model pzirEmi-

eters. The joint and condition^ distributions used in the Gibbs sampler technique follow. 

Consider the observed data y = (yi, • • • ,yn)' and 

e = (l3,er,a,£,s)'  (12.6) 

where 

a- = (o-i,cr2)',  

o- = (ttl, • • • ,an)'> 

e = {,Su£2)',  

S — (Sl, • • • 1 Sn) • 

The joint posterior distribution needed for the analysis is: 

P{fi,a,cx,E,a\y) a P{:y\cx)P{a.\fi ,a,8)P{s\£)P{fi,(T,e) (12.7) 

However, this joint posterior distribution is difficult to obtain anaJytically, as Schmidt observes. Instead 

of directly using this joint posterior distribution, the Gibbs sampler technique draws samples from the 

joint posterior by sequentially drawing subvectors of 6 from their conditional distributions. Suppose 

the parameter vector 9 is divided into d (in our case, five) subvectors. Each iteration of the Gibbs 

sampler cycles through the subvectors of 9, drawing each subset conditionally on the value of all the 
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others and on y. There are d steps in iteration t .  At iteration t ,  an order of the d subvectors of 6 is 

selected and each subvector  is  condit ionally updated,  given al l  the other  components of  6: 

PWSi',y) 

where is all the components of 6, except for 9i, at their current values: 

df—I (Qt Qt Qt—l flC — 

To apply the Gibbs sampler technique, the following conditional distributions cire needed: the condi­

tional distribution of the transition probability, P(e, |a), the conditional distribution of the state vector 

St; a,e), the conditions^ distribution of/3; P(/31a,£, s,y), the conditional distribution 

of <t; P(a-l/3, a, e, s, y) and the conditional distribution of P{at\0, a_t, er, e,  s, y). The conditional 

probabilities of y3 and tr need some modifications due to the increase in the number of regimes. The 

other three are the same as in Schmidt. 

Before examining the above conditioned distributions, it is necessary to define the following indicator 

functions: 

ht = 

ht = l{j,=2}> 

ht = 1{,,=3}. 

At = 1 — ht — ht — ht,  

ht = ht + ht, 

ht = ht + ht-

The last two indicator functions, ht and /je, mean that: 

{1 if state = 1 or 3, 

0 otherwise, 
and 

1 if state = 2 or 4, 
ht= \ 

0 otherwise. 

12.1.1 Conditional Distribution of the Transition Probability 

As noted earlier, the states 1 and 3 sind the states 2 and 4 are treated the same in terms of transition 

probabilities. In other words, in terms of transition probabilities, there exist only two exactly the same 

way as in Schmidt. A subscript i will denote 1 if the economy is in state 1 or 3 eind will also denote 2 

if the economy is in state 2 or 4. From (12.7), the conditional distribution of the transition probability, 
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zi, depends only on the states cind the prior distribution: 

P(e,|-) oc P(s(e)/'(e) i = 1,2 (12.8) 

Following Schmidt, independent beta prior distributions for the £,•; e,- ~ 5eia(7,i, 7,-2) are applied. The 

probability density fimction is: 

This application will assign the value of one to both 7,-i amd 7,2, so that /(e, ) can be treated as a 

uniform distribution. The conditional distribution of the states, given the transition probabilities, can 

be expressed as: 

x[£{"(l - - £2)^"]^" (12.10) 

The simplified conditional distribution restilts firom the following counts of numbers used in a designated 

set: 

= #{t: St = 1 or 3, St+i = 2 or 4, 1 < < < n}, 

io = #{< : St = 2 or 4, St+i = 1 or 3, 1 < < < n}, 

ni = #{t : St = I or 3, 1 < t < n}, 

n2 = #{t : St = 2 or 4, 1 < t < n}. 

and 

P(Sl, S2,---, S„l£) oc £*'(1 - £i)'"-^'£$='(l - £2)"'-'^' (12.11) 

For insteince, is the number of counts for the current state, being either 1 or 3, and the future state, 

being 2 or 4. See Schmidt for the detailed derivation of (12.10) and (12.11). Hence, multiplying (12.9) 

and (12.11), yields: 

P(£,|s) ~ Beta(7ii + A,-, 7,2 + n,- - ki) : = 1,2 (12.12) 

12.1.2 Conditional Distribution of the State Vector 

Let s_t be the state vector with the current state, st, deleted. Then, the conditional distribution of 

St will be expressed as: 

P(st It/, a, er,£) oc P(t/,s,/3.a.er,e) (12.13) 
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Furthermore: 

P{y,s,0,a,(r,e) oc P(at|st,/3,ct_t,o-)P(st+i|st,e)i'(st|st_i,e) (12.14) 

The first term on the right hand side in (12.14), the conditionzd distribution of ott, has normal distri­

bution with mean /?,, and variance a,,: 

-(Qt -  Ps 
(12.15) 

(12.16) 

The second zind third terms on the right hand side of (12.14) Jire respectively expressed as: 

P(St+i|St,£) = [e{"-^'(l -£2)'-'"^']^" 

P(5t|st_i,e) = [e{"(l - £i)^"-^"]^~'^"-'[e2~'^"(l - £2)^"^"]^""' 

By multiplying all three: 

x[4"'^'(l - ei)^"^""+']^"'^""[£2"'^"+'(l - £2)^"^"+']'" 

x[e("(l -ei)^-'f"]^-f"-'[ei-^"(l-£2)^"'^"]^"-' (12.17) 

Note that this is a discrete distribution. 

12.1.3 Conditional Distribution of 0 

Let /3 = (/?!, /?2, 03, Pa)- This produces: 

P{P\o., tr, e. a, y) cc P{a\/3, er, s)P{0) (12.18) 

Now, if the prior distribution of /3 is multivariate normsd with mean /3q and covariance E, then: 

00 = {Pio, P20, 030, 04o) 

Eo = A-^diag{<T^, cr?, <T^, (rf) 

A"^ = diag{Si, S2, 63, 84) and Sj is a specified positive number. If Z and X may defined as Z = 

(tti, • • - , an)', = (At, ht, ht, ht) and X = [xt]"=i, then the diagond matrix X'X is: 

X'X = 
0 

0 

0 

727=1 ht 

0 

0 

0 

0 

ELi ht 

0 

0 

0 

0 

\ 

(12.19) 
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The conditional distribution, P(y3|a, tr, s], is obtained which is multivariate nonnal with mean vector: 

(A + X'X)-^(A/3o + X'Z), 

and covariance matrix: 

diag(al, aj,  of. (r^){A +X'X)~^. 

12.1.4 Conditional Distribution of <r 

The conditional distribution of is expressed as follows: 

P{cr\^,a,e,s,y) ex. P{a\^,a-,s)P(^\a-)P{cr) (12.20) 

Recall that the foregoing assumed that states 12ind 3 share the same vsuriance £ind states 2 and 4 share 

the same variance. Now, the last term on the right, P(o-), is assumed to be the product of independent 

inverse gamma distributions: 

P((T^) cx (<r?)-''-Uxp|^| i = 0,l (12.21) 

where i/ = i/qj and A = 2/{t/ojslj), and VQj and sg^- are prespecified positive numbers. This yields: 

n 

r , n 1 
Picrj\a,^,s) oc (<rj) «=i iit> 

x(^)-^ exp I ~ ~ I 

x(<^)—exp{-i|^} 

= (^.?)-''.-iexp|^} (12.22) 

where 

— 5 Hfsl + fOi" + 1 

A." = 2{Er=i("« - Pifiit + (/?i - /0Oi)'A,(/?,- - ̂Oi) + 

for i= 1,2 and j = 1,2,3,4. 

12.1.5 Conditional Distribution of at 

If a_£ is the vector a with oct deleted, then: 

P(Qrt|a_£,/3.cr,£,5,y) oc P{yt\at)P{at\,St,(3,iT) (12.23) 
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The conditional distribution of a is much simpler than that of Schmidt because a does not follow AR( 1) 

process, as it does in Schmidt, at has a constant term and zin error term as in (12.1). 

12.2 Mean Model 

This section considers the meein model of the regime-switching volatility model, beginning with the 

following: 

f zt = pxt + yt 

yt = exp{^}Cc (12.24) 

at =/?„ + O-„J7£ 

where the two errors, % and Ct, are assumed to have normal distributions with mean zero 2md varizince 

one: 

Ct lid N{Q, 1) 

Tjt i id N{Q, 1) 

Zt and Xt in (12.24) are defined as follows: 

= Cf+i — Ct 

Xt — ^ 

where ct is exchange rate at time period t  and iu,,t  is U.S. interest rate at time period t  and i/.t is foreign 

interest rate at time period t. The first equation in (12.24) is based on the interest parity condition. 

The interest parity condition is: 

iuj.t = ij,t  -  {Et&t+i -  et)/et (12.25) 

Assuming that rational expectations, Et^t+i = et+i hold, the following equation results: 

Ct+i — Ct = (iuj,t — '/.t)ct (12.26) 

The first equation in (12.24) was constructed from (12.26) above and indicates that zt consists of 

structural components and an error component, which is chsirJicterized by a stochastic volatility. Thus, 

this equation cam be used to test whether the interest parity condition holds. 

As in the previous section, at is assumed to have a constant term and aui error term in order to keep 

the model simple. The state of the economy is represented by St and assumes only two unobservable 

states in this model, so that st takes two values; st = 0,1. If the economy is in an unobservable state 

0, the change in exchzmge rate, rt, will be modeled as: 

= pxt -r exp { i(;3o + o-o'7t)} Cr 
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Similarly, if the economy is in unobservable state 1, then zt will be modeled as: 

zt = pxt + exp { kiPi + o-iVt)} Ct-

Note that the coefficient of xt, p, does not depend on unobservable states. 

To describe the process of switching states from 0 to 1, or vice versa, a Mcirkov chain model, which 

assumes a fixed transition probability matrix, is used: 

P{st = 0|sf_i = 1) = eo 

P(st = l|5t-i = 0) = £i (12.27) 

(12.27) gives exactly the szmie interpretation as in the previous section. The probability that the state 

of economy shifts from I to the state 0 is £o and the probability that the state of economy moves from 

0 to the state 1 is £i. A transition probability matrix is eilso written as in (12.4): 

(I — So =0 \ 
(12.28) 

£l I — £i j  

Assuming the regularity condition for the Mcirkov chain, the limiting probability distribution can be 

solved in terms of eo and £i: 

Si TTo = 
£0 + 

n  =  — ( 1 2 . 2 9 )  
So + Si 

A Gibbs sampler technique will be applied to estimate parameters. The Gibbs sampler technique uses 

joint and conditionail distributions to consider the observed data z = (zi, • • • ,Zn)' and x = {xi, • • • , in) 

aind parameters to be estimated in the model: 

8 = {p,^,{r,a,£,s)'  (12.30) 

where 

0 = {0o,Pi)' ,  

(T = (<ro,o-i)', 

^  ( ^ I j * * *  J  )  I  

e = (eo,ei)', 

S  = (si,- - ,s„)'. 

The joint posterior distribution, that is needed for this analysis is: 

P{p,P,<T.a.£.s\x.z) X P{z\p.x.a)P{Q\j3.iT.s]P{s\e)P(^.er.£) (12.31) 
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Therefore, this model requires the following conditional distributions: the conditionsd distribution of the 

treinsition probability e; P(£,|3), the conditional distribution of the state vector Su P{st\p,a-t,fi ,<T,ot.,e,x,z), 

the conditional distribution of y3; P(,^\p, a, £,s,x,z), the conditional distribution of cr; P{a-\p, /3,a.,£,s,x,z), 

the conditional distribution of at] P{at\p,^,a .^t , 'r,£,s,x,z) and the conditional distribution of p; 

P{p\l3,a,a-,e,s,x,z). 

Among the conditional probabilities listed above, the conditional distribution of the transition prob­

ability, P(£,|-), and the conditionzd distribution of the state vector, P(st|p, 5_t,;3, <7-,a,e,®,z), are 

exactly the same as in the previous section. The conditional distribution of p, P{p\l3, a, <r, e,  s,  x, z), is 

newly introduced, which requires some discussion. The other three conditional distributions need some 

modifications. 

12.2.1 Conditional Distribution of 0 

I 
Let P = (00, /?i), this gives: 

Pil3\4>, oc,ar,e,s,x,z) (X P(a\0, <t,  s)P[fi) (12.32) 

Now, when the prior distribution of y3 is taken to be multivariate normaJ with mean ySg and covariance 

V. 

/3o = (/?oo, /?io) 

So = ̂ ~^diag[<jl, erf) 

where A~^ = diag{5o, Si) and Sj is a specified positive number. Now,if the following indicator functions; 

lot = l{»,=o}. and lu = = 1 — Tot are defined and, also, X = (ai, - • - ,ar„)', m't = {lu, ht) and 

M — . Then, the diagoncJ matrix M'M is: 

M'M = i ° ) (12.33) 

V 0 T.Uhtj 

The resulting conditional distribution, P{li\a., a, s), is multivariate normal with mean vector: 

(A + M'M )-i(A)3o + M'L), 

and covariance matrix: 

diag{a^, of)(A + M'M)"^ 
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12.2.2 Conditional Distribution of <r 

The conditional distribution of is expressed as follows: 

P{<T\4>,P,a,£,s,x,z) oc P{a\l3,cr,s)P[^\(r)P{<r) (12.34) 

Now, the last term on the right, P(a-), is assumed to be the product of independent inverse gamma 

distributions: 

P{(7f) « (£rf)-''-^exp I I = 0,1 (12.35) 

where i/ = and A = 2/(i'otSoi)- and 55,- are prespecified positive numbers, this gives; 

n 

f 1 " ] 
P{crj\a,^,s] a {arf) exp ^(at-/?,•)-/.-£ j 

X (cr?)-^ exp I ~ ~ I 

x(.f) —exp{-i|^} 

= (cr?)-"--! exp 1^1 (12.36) 

where 

~ 512"=:l At + ''Of + 1 

A< = 2{5;3"_i(Qt - 0i)^lit + (A - /?0f) + foiSo,}"^ 

for t = 0,1. 

12.2.3 Conditioned Distribution of at 

Conditional distribution of at can be obtained as follows: 

P(at\<f>,0,er,e,s,x,z) oc P{yt\at)P{at\st,0,tr) 

= P(zt-5itlat)P(at|st,;3,<r) (12.37) 

12.2.4 Conditional Distribution of p 

First the conditionad distribution of p can be written as: 

P{p\a,l3,a-,£,3,x,z) <x P{z\p,oc,x)P{p) (12.38) 
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Because the conditional distribution of z is a normal distribution with mean of pxt and variance of e°", 

the distribution can be written as: 

(12.39) 

Assuming that the prior distribution of p is also a normal distribution with mejin pa and variance : 

-4=exp|d|Z^| (12.40) 
I Ko J 

Hence, the conditional distribution of p is: 

P(pla,/3, a-,e,s,x,z) 

W 1 f-(z ,-px,r-] 1 f  
= 2«p{M 2<ri 

Po 

-(p-ppy 
2 
Po 

:exp 
I. t=i 

(zt -  pxcf (p -  Po)-
2exp{at} 2<r2^ 

{DLi "t} 

When the exponential part of (12.41) expauided cind the square completed with respect to p: 

(zf-pxt)- (p-po)^ Ap--2Bp + C 

(12.41) 

-E 

where 

^ 2exp{at} 2o-2 Po 2o-po®^{Er=i Q't} 

X®'poexp{Er=i"t} 20-2^ exp {X;r=x ore} 

r -  SI 

Therefore: 

^ = <^Po ^ - °'j f + /Jo exp ^ 51"' 
j= i  L t= i  J  L t= i  

IS I + Po exp at I 

(12.42) 

Pip\a,^,a-,£,s,x,z) 

1 

{y/{2ir)"y/A 
exp 

- C + ^  

2o-Lexp IS-ll 

:exp < 

X°"po exp I ̂  at 

IP-^Y-

K exp ^ 
. C=1 

(12.43) 
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The last two terms (the third line) in (12.43) indicate that p will be drawn from a normal distribution 

with mean of B/A and vjiriance of exp ^ at | /A in Gibbs sampling: N i^/A, exp | /A 

where A and B are as previously defined. 

The next chapter will apply the data set to the model generated above, and also report some of the 

results. 
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13 EMPIRICAL RESULTS 

13.1 Data Descriptions 

Here the data set is applied to the switching-regime stochastic volatility model. The data sets consist 

of three daily foreign exchange rates and four daily interest rates for four countries from Jan. 1 1975 

to Dec. 31 1993.The countries are France, Germany, United Kingdom and United States. Daily caJl 

money rates are used for daily interest rates. In Table 13.1 amd Table 13.2, summary statistics for each 

time series are provided. 

In Table 13.1, the data summaary for the three daily exchange rates is presented. The second column 

(N) in the table is the number of observations. Basic statistics such as mean and stamdaxd deviation are 

given in the table. The exchange rates are defined as the foreign currency prices of U.S. dollar for the 

rest of the chapter.- For example, EF, which stands for French exchange rate, is the franc price of the 

U.S. dollar. EG and EUK are the German exchange rate and the British exchange rate, respectively. 

A is the first difference operator: 

AEFt = EFt-EFt-i Vt 

Here, the means of the first differences are essentially zero and the standeird deviations of the first 

differences are smaller than those of the original series. The first difference series also have large 

kurtoses (greater than 3), implying that the first order series have fat-tailed distributions relative to 

the normal. 

Figure 13.1, Figure 13.2 and Figure 13.3 present the plots of exchange rates (left) and their first 

differences (right). From the plots of the original series, it it noted that U.S. dollairs appreciated through 

the first half of the 1980s and depredated in the second half of the 1980s against the German Mark and 

the French Franc. U.S. dollars actually depreciated against British pounds in the mid-80s. In all cases, 

the first differences of exchange rates exhibit time-changing volatility, especially around the middle of 

the 1980s (observations 2000-2500), where they exhibit larger volatilities. 

'The data sets were kindly provided by Mr. Patrick Decker of the Federsd Reserve Bank of Washington, D.C.. 
^In the previous chapters, the exchange rates were defined eis the dollar price of the foreign currencies. 
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French Franc Difference of French Franc 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

French Interest Rate Difference of French Interest Rate 
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Figme 13.1 French Exchange Rate cuid Interest Rate 

Table 13.1 Data Summary for Daily Exchamge Rates 

Variables N Meaui Standard Error Skewness Kurtosis 

EF 4289 5.88 1.40 0.97 0.46 

AEF 4289 0.00 0.04 -0.09 7.56 

EG 4294 2.11 0.43 0.57 -0.52 
AEG 4294 0.00 0.01 -0.26 5.01 
EUK 4316 1.75 0.29 0.37 -0.16 

AEUK 4316 0.00 0.01 -0.33 3.70 

Table 13.2 gives the data summary for the three daily interest rates. Daily interest rates are defined 

as the difference between foreign call money rate eind the U.S. cjJl money rate. INTF is, for insteince, 

defined as the difference between French call money rate eind U.S. call money rates: 

INTF = French call money rate — U.S. call money rate. 

The other two interest rates are similarly defined. In the bottom of Figure 13.1, Figure 13.2 amd 

Figure 13.3, interest rates (left) and their first differences (right) are plotted. These plots show that 

foreign interest rates were relatively lower than the U.S. interest rate during the 1980s. On the other 

hand, foreign interest rates were higher thaxi the U.S. interest rate in the 1990s. They also show that 

volatility in interest rates changes over time. 
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Figure 13.2 Germain Exchauige Rate and Interest Hate 

Table 13.2 Data Summary for Daily Interest Rates 

Variables N Mean Standaird Error Skewness Kurtosis 

INTF 4289 1.78 2.81 -0.39 1.57 

AINTF 4289 0.00 0.52 -0.45 27.34 

INTG 4294 -1.95 3.43 0.65 0.34 

AINTG 4294 0.00 0.59 -0.92 34.03 
INTUK 4316 2.84 3.15 -0.64 1.16 

AINTUK 4316 0.00 0.61 -0.56 15.74 

This chapter examines the question of whether or not the interest rate differential explciins move­

ments of the exchange rate including the volatility. At this moment, there is no clear relationships 

between movement of exchange rates auid that of interest rates. At the beginning of the sample (up to 

the 2000th observation), exchange rates and interest rates move in a similar fashion. 

The purpose in this part is to construct a model that relates exchamge rate volatility to movement of 

interest rates to see if movements of exchange rates depend on the size of the interest rate differential. 

First, it is necessary to divide the whole data set depending on whether or not the size of difference of 

two interest rates is greater than and equad to some positive number (it). Here 3%, 4% amd 5% have 
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British Pound 
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Figure 13.3 British Exchange Rate amd Interest Rate 

been chosen for k.^ In other words, the data is split into two parts depending on whether the interest 

rate differential stays inside the bounds or moves outside the bounds of the prespecified interest rate 

differentiaJ. 

Table 13.3 presents the data summary of exchange rates with k = 3. The subscript G indicates that 

the data correspond to difference of interest rates greater than or equad to 3% while the subscript L 

implies the data corresponding to difference of interest rates less than 3%. Note that there is a higher 

kurtosis in eaxi case of the exchange rate with subscript L, which implies a higher volatility. 

13.2 Empirical Results I 

The model used to estimate is described in (12.1): 

y,=exp{^}G 

a t  = + a - s , T i t  ( 1 3 . 1 )  

The following eight parameters need to be estimated in the model: j3i, /?2, /%, 04, ci,  f2, £i, and £2-

The Gibbs sampler technique was used to estimate the parameter vaJues. A bum-in period of 5,000 

Gibbs iterates was chosen and 10,000 observations were used in the analysis. All the results aire based 

^This section will report the results for fc = 3. The results for fc = 4.5 will be presented in the Appendix. 
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Table 13.3 Data Summary for Daily Exchange Rates: k = Z 

Variables N Mecin Standard Error Skewness Kurtosis 

EFG 1599 5.54 1.01 LOO 0.74 

EFL 2690 6.08 1.55 0.76 -0.17 

AEFC 1599 0.00 0.04 0.26 6.64 

AEFL 2690 0.00 0.04 -0.22 7.79 

EGG 2490 2.06 0.43 0.74 -0.54 

EGL 1804 2.17 0.42 0.37 -0.28 
AEGG 2490 0.00 0.01 -0.08 4.85 

AEGL 1804 0.00 0.01 -0.59 5.22 
EUKG 2347 1.77 0.30 0.39 -0.26 

EUKL 1969 1.73 0.26 0.28 -0.21 

AEUKG 2347 0.00 0.01 -0.35 3.13 

AEUKL 1969 0.00 0.01 -0.32 4.53 

Table 13.4 Data Summary for Daily Interest Rates: k = 3 

Variables N Mean Standard Error Skewness Kurtosis 
INTFG 1599 3.27 3.79 -1.44 1.82 

INTFL 2690 0.89 1.39 -0.66 -0.30 
INTGG 2490 -2.52 4.25 0.92 -0.24 

INTGL 1804 -1.17 1.43 1.13 0.94 

INTUKG 2347 4.48 3.25 -2.18 5.91 

INTUKL 1969 0.89 1.49 -0.52 -0.70 

on 5,000 observations after a bum-in period of 5,000. The estimated marginal posterior distributions 

of the parameters for each country are shown in Figure 13.4, Figure 13.5, and Figure 13.6. The figures 

in the middle and the bottom are estimated margined posterior distributions of <rs smd es, respectively. 

For figures of distribution of 0s, the solid line represents the distribution of 0i. The dotted line is the 

distribution of /32- Finally, the lighter broken line is the distribution of 03 and the heavy broken line 

represents the distribution of 0^. For figures of crs and es, the solid line represents an unobservable 

state A (states 1 and 3) and the dotted line is am unobservable state B (states 2 and 4}. 

The estimated posterior means of the parameters eire given in Table 13.5. The numbers in parenthesis 

are vairiauices, the figure in the top, the estimated marginal posterior distribution of 0s. 

In the French case, there is a distinction in 0 between unobservable state A and unobservable state 

B. State A represents larger values of 0 which implies that the larger change in exchange rate, yt-

However, within state A there is not much distinction in the distributions of 3s between state 1 and 

3. 01 and 02 seem to have similar distributions, eilthough distribution of 0z is slightly rightward to 
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Figure 13.4 Estimated Marginal Posterior Distribution: France 

distribution of j3i. In other words, it seems that once the economy enters unobservable state A, whether 

the interest rate differential or the expected appreciation (depreciation) stays inside or outside the 3% 

bounds does not make much difference. 

To see whether the two parameters and are different, in particular, if the posterior probability 

that /?i is larger than 03, P{0i > ^), the posterior probability was computed. The results of compar­

isons of 0s by posterior probabilities are given in Table 13.6. The result for 0i and 0z is 0.44. Looking 

at Figure 13.4, it is diflBcult to distinguish /?i and 0z- On the other hand, the difference between 02 

and 0^ is more visible. From Figure 13.4, 02 seems to take on smellier values than 04. 

The posterior probability that 02 is greater than 0^, P{02 > 0A ) ,  is 0.09. Less than 10% of the 

pairs of 02 and 0^ satisfy 02 > /S4, so it can be concluded that 02 is likely to be smaller than 04- If 

the economy is in state B, the interest rate differential seems to make some difference. If the absolute 

value of the interest rate differential is larger than 3%, the value of 0 [02) tends to be smadler, which 

implies that the change in the exchange rate is more likely to be smaller. If the interest rate differentied 

is within the 3% bounds, the change in the exchange rate tends to be iMger. 

The variability parameters a\ and <T2 do not have distinct distributions. The posterior probability, 

P{(j\ > (T2), is 0.37. It is not clear whether cri is smaller than cj. It may be concluded that the values 

of (7S do not depend on the two unobservable states very much. 
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Figure 13.5 Estimated Marginal Posterior Distribution: Germany 

The means of the state values drawn at each time period eire plotted in Figure 13.7, aJong with the 

data of both exchange rates and interest rates. In the French case, the economy appejirs not to chamge 

states often. From observation 1 to approximately observation 1300 (November 7 1980), most of the 

time, it stays in imobservable state B, which represents a state of lower volatility of exchamge rate. 

After about the observation 1300, it switches to state A, which is state of higher volatility of exchange 

rate, eind stays in state A. This is approximately one year after the Reagan auiministration took the 

office. It is well known that during the Reagan Eulministration the exchainge rate was allowed to move 

relatively freely. 

In the German case, the results seem to give clearer implications. The two unobservable states, A 

and B, meike more differences in Clearly, 0 in state A (state 1 and 3) is smaller than 0 in state B 

(state 2 and 4). It is also noted that the variability parameter, tr, in state A is lairger than in state 

B. Note that unobservable states A eind B are reversed, compared with the French case, since the 

parameters and 0z in state A are smaller than 02 ^d /?4 in state B. Hence, state A implies a state 

of lower volatility and state B represents a state of higher volatility. Unobservable states A amd B are 

named to provide a convenient distinction. Schmidt discusses the issue of identifiability in more detail. 

Interest rate differential makes some distinction between the values of 5 within ezich unobservable state. 

More specifically, if the economy is in state A and the interest rate differential is outside the 3% bounds. 
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Figure 13.6 Estimated Marginal Posterior Distribution; Britain 

then the change in the exchange rate tends to be larger than otherwise. In other words, the value of 

01 is likely to be larger than the value of 0z- Note also that the posterior distribution P{0i > jSs) 

is 0.99 from Table 13.6. In state B, however, an interest rate differential greater than the 3% bounds 

leads to smaller change in exchange rate. The vsJue of /?2 tends to be smaller than the value of 0^. 

The computed posterior distribution P{02 > M is only 0.16. Less than 20% of the pairs of 02 04, 

satisfies the relation of 02 > 0a. 

The variability parameters, a, also appear to depend on the two unobservable states. The veiriability 

pzurameter in state A, cri, is likely to be larger than eT2 in state B. The posterior probability P(<ri > cj) 

is 0.98, which conforms to the observation. 

The meauis of the state values are plotted with the data in Figure 13.8. It is evident that there is 

more often chsuige in the state of economy. The state A will be interpreted as a state of low volatility 

and the state B will be a state of high volatility, that is, the first 1300 observations and the last 1500 

observations are likely to stay in state A cmd the middle 1500 observations tend to stay in state B 

zdthough the state frequently changes. In the data, the 1300th observation is dated October 17, 1980 

and the observation 2800 is June 15, 1987. These observations correspond to what was observed in the 

exchamge rate movement during the 1980s. 

In the British case, 0s are different, depending on which unobservable state the economy is in. 3s 
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Table 13.5 Estimated Posterior Means of the Parameters: fc = 3 

01 02 0A <72 £1 £2 
France -6.70 -9.87 -6.69 -9.65 0.97 1.01 0.004 0.02 

(0.003) (0.019) (0.002) (0.012) (0.002) (0.008) (0.000") (0.000) 
Germany -9.45 -7.97 -9.63 -7.88 0.80 0.63 0.008 0.02 

(0.003) (0.004) (0.004) (0.007) (0.003) (0.004) (0.000) (0.000) 

Britain -9.26 -14.37 -9.47 -14.47 0.93 0.59 0.001 0.05 
(0.002) (0.117) (0.002) (0.032) (0.001) (0.039) (0.000) (0.000) 

"This does not mean that the variance is zero. The value is very small (S.290017e-06). 

Table 13.6 Comparisons of 0s: Posterior Probability: k = 3 

P[0i > 0z) P[02 > 0A )  P(<ri > 0-2) 

France 0.44 0.09 0.37 

Germany 0.99 0.16 0.98 

Britciin 1.00 0.39 0.94 

in state A are larger than /3s in state B. State A cam be interpreted as a state of a Icirger change in 

exchange rate and state B, a state of a smaller change. In Figure 13.9, the state means will verify 

our interpretations of the unobservable states. The interest rate differential or expected appreciation 

(depreciation) will be important in state A. If the interest rate differential is outside the 3% bounds, 

then 0 takes even larger values and if the interest rate differentieJ is within the 3% bounds, P will 

be slightly smaller, that is,j5i tends to be larger than 03- Note, also, that the estimated posterior 

probability, P{0i > 0z), is 1.00. In state B, however, the interest rate differentizJ does not seem to 

play a role. The two marginal posterior distributions of 02 and 0^ overlap very much. The estimated 

posterior probability, P{02 > 0A),  is 0.39 which makes it  difloicult to sepairate 02 from 0^. 

The variability paraimeter seems to be independent of unobservable states since its marginad posterior 

distributions overlap. However, the posterior probability of P(cri > 0^2) is as high as 0.94 which says 

that, most of the time, the variability parameter in state A, <ri, is larger than the variability parameter 

in state B, 0-2. 

In Figure 13.9, state A, a high volatility state, is the most permanent and it seldom changes state 

from state A to state B. In the British case, exchange rate seems to have already been in the state of 

higher volatility around the observation 600 (October 26, 1977). Since then, the exchange rate stays in 

the highly volatile state. 
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Figure 13.7 State Means and Data: France 

13.3 Empirical Results II: Mean Model 

The previous section examined interest rates to see if they have some explanatory power for different 

regimes of exchange rate, however the results were not so promising. It seems that interest rates do not 

contribute to separating regimes in the model previously specified. To further investigate a relationship 

between exchange rate and interest rate, it is necessary to estimate a mean model (12.24). 

This section will present the results for the mean model (12.24) as derived from the interest peirity 

condition. Here, the focus lies in the coefficient of Xt, p. If p equals one, then the interest peirity 

condition holds. If p is zero, then exchange rate follows a reindom walk and interest rates do not explain 

the movement of exchange rates. 

In this model, as previously discussed, it is necessary to estimate the following parameters; p, Po, 

0 1  y  f i )  S o  t i n d  f x -

Table 13.7 reports the estimated posterior means of the seven parameters for each country and shows 

that the estimated parameter p is essentially zero in all 3 cases. This implies that all three exchange 

rates follow a reindom walk process since (12.24) becomes: 

Zt =exp|y}C£ 

Or = 8,, +a-,^rjt (13.2) 

I 
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Germany; 3% 

Figure 13.8 State Means and Data: Germany 

This conclusion can also be confirmed by checking Figure 13.10, Figure 13.12 and Figure 13.14. At the 

top of each Figure is the marginal posterior distribution of p. In aJl three cases, the distribution of p is 

mound-shaped with mean of approximately zero and the distribution does not include one. Therefore, 

the null hjTJOthesis, p equals one, is rejected. This result indicates that the data not only reject the 

interest parity condition but also implies that exchange rates follows a random walk process. This result 

also means that a relationship between exchange rates and interest rates does not exist for the daily 

data in these three countries. 

In the French case, it is obvious that takes on larger values than /?i. State 0 is considered to 

capture a state of larger volatility, while state 1 represents a state of smaller volatility, ctq is more likely 

to tsJce on smaller values thain ci. Figure 13.11 gives the plots of the parameters. /?o and take on 

distinct values. Figure 13.16 reports a comparison of state means and data of first difference of exchange 

rate. Agjiin, state 0 corresponds to a state of larger volatility auid state 1 represents a state of smaller 

volatility. As was seen previously, after the observation 1300, the state stays in a high volatility state 

most of the time. 

In the Germzui case, the state 0 implies a state of smaller variability since /3o taJces on smaller 

values than 0i. There is little observable difference in the values of <t amd £, in particular, the two 

distributions of e overlap very much. The same results are found in the plot of the parameters in 
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Britain: 3% 

Figure 13.9 State Means and Data; Britain 

Figxire 13.13. Figure 13.17 shows that state 0 corresponds to a state of smaller volatility and state 1 

represents a state of larger volatility, and states more often switch between 0 and 1, when compared 

with the French case. 

In the British case, a state 0 represents a state of small Vciriability, since the distribution of /?o is 

flatter than the distribution of 0i. This is also implied in the second figure in Figure 13.15, by the fact 

that /3o Vciries more thain /?i. <ro takes on larger values but it also has a larger variance. Figure 13.18 

indicates that state 0 is a state of lower volatility and state 1 is a higher volatility state. In the British 

case, state stays in a higher volatility state most of the time after the observation 700. 
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Table 13.7 Estimated Posterior Means of the Parameters 

P /?o 01 O-Q 0-1 £0 
Framce -0.000007 -6.50 -9.11 0.89 1.09 0.01 0.01 

(0.00)" (0.000) (0.09) (0.003) (0.008) (0.004) (0.004) 
Germany -0.00001 -9.78 -8.16 0.79 0.66 0.01 0.02 

(0.000)'' (0.016) (0.014) (0.003) (0.004) (0.001) (0.002) 
Britain 0.00001 -12.78 -9.23 1.59 0.84 0.04 0.004 

(0.000)= (1.030) (0.037) (0.058) (0.001) (0.002) (0.003) 

'This does not mean that the variance is zero. The value is very small (3.61922e-10). 
'5.230819e-10. 
<=1.940401e-10. 
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Figiire 13.10 Estimated Marginal Posterior Distribution: France 
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Figure 13.11 Estimated Parameters: Framce 
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Figure 13.12 Estimated Marginal Posterior Distribution: Germany 
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Figiire 13.13 Estimated Parzimeters: Germany 
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Figure 13.14 Estimated Marginal Posterior Distribution: Britetin 
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Figure 13.15 Estimated Parameters: Britziin 
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Figure 13.16 State Means and Data: France 
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Figure 13.17 State Means auid Data: Germsmy 
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Figure 13.18 State Meeins cind Data: Britain 
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14 CONCLUSION 

This part attempted to model the volatility of exchamge rates, applying a regime-switching stochastic 

volatility model to the exchange rate data to examine the volatility of exchange rates. The model 

used, the four-regime-switching stochastic volatility model, was an extension of Schmidt's two-regime-

switching stochastic volatility model. Observable states, depending on interest rate differential along 

with unobservable states, were introduced for the modification, specifically, the assvimption that the 

interest rate differential is equal to expected appreciation or depreciation, if the interest parity condition 

holds. Introduction of another set of unobservable states would make the model more complicated, 

however, by introducing a set of observable states, the model was extensively simplified. In terms of 

the model parameters, there were four different ^s; /3i to /?4. To avoid further complication, it was 

assumed that the variability parameter, cr, depends only on unobservable states. In other words, there 

are only two variability parameters in the model, ijicluding only two transition probability parameters, 

£i and $2- As Schmidt pointed out, the primary advantage for the model is its ability to allow for the 

possibility of multiple states and this has been euiueved by our model. In all cases, the French, Germam 

2ind British cases, it is clear that there exist two distinct unobservable states. This can be seen from the 

fact that there are always two distinct sets of parameters 6s. In some cases (for example, the German 

case), the variability parameters <rs edso depend on these unobservable states. Regardless of the issue 

of identifiability, these two states can be interpreted as the high volatility state and the low volatility 

state. These results correspond to the results obtained in Schmidt. Using the vzJue-weighted mairket 

index from the Center for Research in Security Prices (CRSP), she also found that two unobservable 

states play a rather important role for the volatility in the market index. 

On the other hand, the observable states introduced here do not play as crucial a role as the 

unobservable states. This is partly because the choice of variable, the interest rate, may not be a good 

one. For instance, in the German case, the interest rate plays a relatively important role in the model, 

as evidenced by the fact that the values of /?i and 03, and /?2 and /?4 are more discernible. We can see the 

same implication from the computed posterior probabilities P(/?i > ^3) and P{02 > 0a) in Table 13.6. 
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However, in the French £ind British case, the role of the oiDservable states is aot clear, except for the 

state of high volatility in Britain, as can be seen by the overlaps in the margined posterior distributions 

of /?s and as. After changing the value of k, which is the interest rate bound, the results do not appear 

to chcinge dramatically. These results zure reported in the Appendix. In some cases, for instance, the 

French case with the 4% bounds, the role of the interest rate seems to become more important. In the 

other cases tested, the results are similar. 

It is also observed that the exchjinge rate very often causes the state to switch between unobservable 

state A and B in the German case, while the exchange rate seldom causes this switch between states 

in the French and British cases. Both the French and British exchange rates stay in a high volatility 

state most of the time. Introduction of interest rates as observable states did not give cleax results. 

To exaunine the relationship between exchange rate and interest rates along with exchzmge rate 

volatility, a mean model of regime-switching volatility model, derived from the interest parity condition, 

was introduced. The results indicate that interest rates do not have explanatory power for exchange 

rates. So, it is concluded that exchsuige rates simply follow a random walk process. This result was 

observed in all three countries. On the other hand, two distinct states in exchange rates were found to 

exist. They can be interpreted as state of a high volatility and state of a low volatility. 

Forecasts using the above regime-switching stochastic volatility model are very possible. Here is 

a rough sketch of the prediction procedures. The procedure will start with the following predictive 

posterior distribution: 

•P(yt+i|y) = J P(yt+i[at+i)P(at+x|st+i,fl)P(st+i|0)P(0|y)dat+idst+i <̂ 0 (14.1) 

where 9 = ()3, a, <T,e, a). This will be approximated as follows: 

k=l 

where k indicates the ith iteration of Gibbs sampling. It is possible to simulate state vjuiable Sf+i and 

continue to find all other pareuneters, said then, finally yt+i. Finding Sf+i, it is then possible to find 

o'j.+i and Therefore, the predictive distribution of yt+i will be derived based on these 

values. Updating state variable t + 2, t -1- 3, • • • makes it possible to forecast further yt+2, Vt+a-

The forecasting issue may be approached in a similar way for the mean model. However, not 

only parzmaeters aire needed but dso the vjdue of Xt+i to forecast yt+i. It is necessary to model the 

process {zt}-
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15 GENERAL CONCLUSION 

Each of the two statisticzd models, the cointegration partial model and the stochastic volatility 

model, that were discussed and applied to the data set in this thesis, investigated different exchange 

rate related questions. The first part of the thesis applied the cointegration psirtial system model to a 

set of monthly data that included exchange rates, money supplies, and GNPs. The goal here was to 

investigate the third country effects on the exchange rate determination, and, indeed, adding the third 

country's variables drastically increases the number of parameters in the model. The partieJ system 

model solves this problem by audopting the concept of weak endogeneity. While the results indicate 

some evidence that the third country's effects cam not be ignored, their interpretations are not obvious. 

In peirticular, the three-country theoretical model, based on Dombusch sticky price model, could not 

explain the empirical results well, since, in the end, the signs of coeflScients did not follow the signs 

predicted by the model. 

For further research, the model can be modified by introducing other assumptions, particularly, 

the interest parity condition that was assumed by the model. As some past research has reported an 

inability of the condition, relaxing the interest parity condition may yield superior results . Similairly, 

the model might also be extended using one of the other exchange rate determination models discussed 

in the first pcirt, rather them Dornbusch's sticky price model, which has served as the base for the model 

presented here. 

In the second pairt, the regime-switching stochastic volatility model was applied to the daily exchange 

rate data in order to investigate volatility of the exchange rates and, simultaneously to examine the 

relation between deiily interest rates and daily exchsmge rates. Here, the results did not find any relations 

between interest rate cind exchange rate, which implies that the dauly exchemge rate follows a random 

walk process. However, the model successfully captured the two different regimes; the highly volatile 

state and the less volatile state. 

For further study, this model cam be extended in many directions. Different economic assumptions 

will create more and different structured assumptions that may be imposed on the model. Also, the 
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a priori structures imposed on the relation between interest rate and exchange rate might have been 

unresdistic, that is, the interest rate may be influenced by the exchamge rate. If this is indeed the case, 

the interest rate should be endogenized in the model. Finally, prediction of the exchange rate using the 

model is also an intriguing topic for further research. 
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APPENDIX 

In this appendix we will report the results for Ar = 4 and = 5. In other words, these are the results 

for setting the interest differential bounds to be 4% and 5%. 

Table A.l Data Summary for Daily Exchcinge Rates: k = 4 

Vsiriables N Mean Standard Error Skewness Kurtosis 
EFG 811 5.45 0.75 1.14 1.68 

EFL 3408 5.99 1.50 0.79 -0.07 
AEFG 811 0.00 0.04 0.69 6.33 

AEFL 3408 0.00 0.04 -0.25 7.76 

EGQ 1451 2.04 0.43 0.67 -0.72 

EGL 2843 2.14 0.43 0.54 -0.38 
AEGG 1451 0.00 0.01 0.11 3.61 

AEGL 2843 0.00 0.01 -0.48 5.70 

EUKG 1671 1.77 0.29 0.33 0.22 

EUKL 2645 1.74 0.28 0.40 -0.43 
AEUKG 1671 0.00 0.01 -0.39 3.00 
AEUKL 2645 0.00 0.01 -0.29 4.24 

Table A.2 Data Summary for Deiily Interest Rates; k = 4 

Variables N Meaui Standard Error Skewness Kurtosis 
INTFG 811 4.16 4.26 -1.87 2.84 
INTFL 3408 1.16 1.85 -0.66 -0.11 
INTGG 1451 -2.67 5.09 0.80 -0.86 
INTGL 2843 -1.59 2.04 1.15 0.60 

INTUKG 1671 5.05 3.53 -2.57 6.86 

INTUKL 2645 1.44 1.82 -0.66 -0.34 
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Figure A.l Estimated Margined Posterior Distribution: France, fc = 4 
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Figure A.2 Estimated Marginal Posterior Distribution: Germany, k = 4 
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Britain: 3% 

Figure A.3 Estimated Marginal Posterior Distribution: Britain, k = 4 

Figure A.4 State Means and Date: France, = 4 
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Germany; 4% 
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Figiire A.5 State Means and Data: Germanv, ^ = 4 

Table A.3 Estimated Posterior Means of the Parameters: k = A 

02 /?4 o-i (72 £1 ^2 

Frjince -6.42 -8.90 -6.34 -8.73 0.81 1.11 0.01 0.02 
(0.006) (0.038) (0.004) (0.016) (0.003) (0.006) (0.000)" (0.000) 

Germany -8.23 -9.78 -8.19 -9.82 0.68 0.78 0.01 0.01 
(0.006) (0.008) (0.004) (0.004) (0.003) (0.003) (0.000) (0.000) 

Britain -9.26 -14.37 -9.47 -14.47 0.93 0.59 0.001 0.05 
(0.002) (0.117) (0.002) (0.032) (0.001) (0.039) (0.000) (0.000) 

"Again, this does not mean that the variance is zero. The value is very small (7.3326€8e-06). 

Table A.4 Compairisons of 0s : Posterior Probabilities: A: = 4 

P(/?i > 0z) P[02 > M P(o-i > 0-2) 
France 0.16 0.14 0.01 

Germany 0.31 0.68 0.10 

Britain 1.00 0.39 0.94 
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Table A.5 Data Summary for Daily Exchange Rates: k = 5 

Variables N Mean Standard Error Skewness Kurtosis 

EFG 551 5.22 0.41 0.45 1.91 

EFL 3738 5.98 1.47 0.80 0.03 

AEFc 551 0.00 0.04 0.33 1.60 

AEFL 3738 0.00 0.04 -1.33 8.17 

EGG 880 1.98 0.43 0.88 -0.27 

EGL 3414 2.14 0.43 0.52 -0.51 

AEGG 880 0.00 0.02 0.19 4.10 

AEGL 3414 0.00 0.01 -0.42 5.26 
EUKG 1250 1.81 0.27 0.20 1.01 

EUKL 3066 1.73 0.26 0.28 1 p
 

AEUKG 1250 0.00 0.12 -0.46 3.57 

AEUKL 3066 0.00 0.01 -0.26 3.63 

Table A.6 Data Summary for Daily Interest Rates: k = o 

Veiriables N Mean Standard Error Skewness Kxirtosis 
INTFG 551 4.54 4.97 -1.83 2.07 

INTFL 3738 1.37 2.04 -0.61 -0.06 

INTGG 880 -2.52 5.93 0.58 -1.39 

INTGL 3414 -1.81 2.38 1.13 0.59 

INTUKG 1250 5.36 3.89 -2.60 6.25 

INTUKL 3066 1.81 2.05 -0.62 -0.18 

Table A.7 Estimated Posterior Means of the Psa^ameters: k = 5 

02 0z /34 <ri 0*2 Si £2 
France -6.48 -9.41 -6.47 -9.01 0.87 1.10 0.01 0.02 

(0.009) (0.056) (0.002) (0.006) (0.002) (0.007) (0.000) (0.000) 

Germeiny -9.87 -8.26 -9.88 -8.27 0.74 0.70 0.02 0.01 
(0.013) (0.008) (0.007) (0.004) (0.004) (0.002) (0.000) (0.000) 

Britain -9.13 -13.22 -9.33 -13.44 0.86 1,43 0.003 0.04 
(0.003) (0.092) (0.001) (0.039) (0.002) (0.023) (0.000) (0.000) 
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Figure A.6 Estimated Margined Posterior Distribution: France, k = o 
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Figure A.7 Estimated McirginaJ Posterior Distribution: Germany, k = 5 
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Btttain:S% 

Figure A.8 Estimated Marginal Posterior Distribution: Britain, k = b 
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Figure A.9 State Means cind Data: Freince, = 5 
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Germany: 5% 
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Figiire A. 10 State Means and Data: Germany, k = 5 

Germany: 5% 

Figure A.11 State Means and Data: Britaiin, k = 5 
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